白光led电源设计技术论文

白光led电源设计技术论文

ID:25930403

大小:53.50 KB

页数:6页

时间:2018-11-23

白光led电源设计技术论文_第1页
白光led电源设计技术论文_第2页
白光led电源设计技术论文_第3页
白光led电源设计技术论文_第4页
白光led电源设计技术论文_第5页
资源描述:

《白光led电源设计技术论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、白光LED电源设计技术论文.freelp为充电泵IC内部产生的电压,VBat为锂离子电池的典型电池电压。充电泵需要提供一个恒定的电流以及相当于LED3.5V典型正向电压的输出电压。通常,固定转换增益为2的充电泵会在内部产生一个更高的电压(1),该电压将会导致一个降低整体系统效率的内部压降(2)。更为高级的充电泵解决方案通过在1.5和1转换增益之间进行转换克服了这一缺点。这样就可以在电池电压稍微高于LED电压时实现在90%~95%效率级别之间运行,从而充许使用增益值为1的转换增益。方程式(3)和方程式(4)显示了这一性能改进。当电池电压进一步降低时,充电泵需要转换到1.5增益,从

2、而导致效率下降至60%~70%,如示例(5)和(6)所示。图2显示了充电泵解决方案在不同转换增益M条件下理论与实际效率曲线图。转换增益为2的真正的倍压充电泵具有非常低的效率(低至40%),且对便携式设备没有太大的吸引力;而具有组合转换增益(增益为1.0和1.5)的充电泵则显示出了更好的效果。这样一款充电泵接下来的问题就是从增益M=1.0向M=1.5的转换点转换,这是因为发生增益转换后效率将下降至60%的范围。当电池可在大部分时间内正常运行的地方发生效率下降(转换)时,整体效率会降低。因此,在接近3.5V的低电池电压处发生转换时就可以实现高效率。但是,该转换点取决于LED正向电压

3、、LED电流、充电泵I2R损耗以及电流感应电路所需的压降。这些参数将把转换点移至更高的电池电压。因此,在具体的系统中必须要对这样一款充电泵进行精心评估,以实现高效率数值。计算得出的效率数值显示了充电泵解决方案最佳的理论值。在现实生活中,根据电流控制方法的不同会发生更多的损耗,其对效率有非常大的影响。除了I2R损耗以外,该器件中的开关损耗和静态损耗也将进一步降低该充电泵解决方案的效率。通过使用一款感应升压转换器可以克服这些不足之处,该升压转换器具有一个可变转换增益M,如方程式(7)和图3所示。该升压转换器占空比D可在0%和实际的85%左右之间发生变化,如图3所示。可变转换增益可实

4、现一个刚好与LED正向电压相匹配的电压,从而避免了内部压降,并实现了高达85%的效率。可驱动4白光LED的标准升压转换器图4中的升压转换器被配置为一个可驱动4白光LED的电流源。该器件将检测电阻器Rs两端的电压调节至1.233V,从而得到一个定义的LED电流。本结构中使用的升压转换器在1.233V电流检测电阻器两端将有一个压降,而检测电阻器的功耗会降低该解决方案的效率。因此,必须降低检测和调节该LED电流的压降。除此之外,对于许多应用来说,调节LED电流和LED亮度的可能性也是必须的。图5中的电路实现了这两个要求。在图5中,一个可选齐纳二极管被添加到了电路中,用钳位控制输出电压

5、,以防止一个LED断开连接或出现高阻抗。一个具有3.3V振幅的P信号被施加到该转换器的反馈电路上,同时使用了一个低通滤波器Rf和Cf,以过滤P信号的DC部分并在R2处建立一个模拟电压(Vadj)。通过改变所施加P信号的占空比,使该模拟电压上升或下降,从而调节该转换器的反馈电压,此举会增加或降低转换器的LED电流。通过在R2处施加一个高于转换器反馈电压(1.233V)的模拟电压,可以在检测电阻器两端实现一个更低的感应电压。对于一个20mALED电流而言,感应电压从1.233V下降到了0.98V(对于10mALED电流而言,甚至会降至0.49V)。当使用一个具有3.3V振幅的P信号

6、时,必须要将控制LED亮度的占空比范围从50%调整到100%,以得到一个通常会高于1.233V反馈电压的模拟电压。在50%占空比时,模拟电压将为1.65V,从而产生一个20mA、0.98V的感应电压。将占空比范围限制在70%~100%之间会进一步降低感应电压。由此得出的效率曲线如图6所示。效率还取决于所选电感。在此应用中,一个尺寸为1210的小型电感可以实现高达83%的效率,从而使总体解决方案尺寸可与一个需要两个尺寸为0603的飞跨电容充电泵解决方案相媲美。图7显示了LED电流作为控制LED亮度的P占空比的一个线性函数。上述解决方案显示了用于驱动白光LED的标准升压转换器的结构

7、以及通过限制P占空比范围并选择一个不同的电流控制反馈网络来提高效率的可能性。按照逻辑思维,我们接下来将讨论一款集成了所有这些特性的解决方案。专用LED驱动器减少了外部组件数量图8显示了一款集成了前面所述特性的器件。直接在CTRL引脚上施加一个P信号就可以对LED电流进行控制。电流感应电压被降至250mV,且过压保护功能被集成到一个采用小型3mm×3mmQFN封装的器件中。其效率曲线如图9和图10所示。图10显示整个锂离子电池电压范围(2.7V~4.2V)内均可以实现80%以上的效率。在此应用

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。