欢迎来到天天文库
浏览记录
ID:25908410
大小:258.50 KB
页数:10页
时间:2018-11-23
《计量经济学重点(超全版~)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、-1.经济变量:经济变量是用来描述经济因素数量水平的指标。(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。(1分)3.被解释变量:是作为研究对象的变量。(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定
2、。(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。(1分)10.函数关系:如果一个变量y的取值可以通过另
3、一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。(3分)14.总变差(总离差平方和):在回归模型中,被解释变量的观测值与其均值的离差平方和。(3分)15.回归变差(回归平
4、方和):在回归模型中,因变量的估计值与其均值的离差平方和,(2分)也就是由解释变量解释的变差。(1分)16.剩余变差(残差平方和):在回归模型中,因变量的观测值与估计值之差的平方和,(2分)是不能由解释变量所解释的部分变差。(1分)17.估计标准误差:在回归模型中,随机误差项方差的估计量的平方根。(3分)18.样本决定系数:回归平方和在总变差中所占的比重。(3分)19.点预测:给定自变量的某一个值时,利用样本回归方程求出相应的样本拟合值,以此作为因变量实际值和其均值的估计值。(3分)20.拟合优度:样本回归直线与样本观测数据之间的拟合程度。(3分)21.残差:样本回归方程的拟合值与观
5、测值的误差称为回归残差。(3分)22.显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检验程序。(3分)23.回归变差:简称ESS,表示由回归直线(即解释变量)所解释的部分(2分),表示x对y的线性影响(1分)。24.剩余变差:简称RSS,是未被回归直线解释的部分(2分),是由解释变量以外的因素造成的影响(1分)。-25.多重决定系数:在多元线性回归模型中,回归平方和与总离差平方和的比值(1分),也就是在被解释变量的总变差中能由解释变量所解释的那部分变差的比重,我们称之为多重决定系数,仍用R2表示(2分)。26.调整后的决定系数:又称修正后的决定系数,记为,是为了克服多重决定
6、系数会随着解释变量的增加而增大的缺陷提出来的,(2分)其公式为:(1分)。27.偏相关系数:在Y、X1、X2三个变量中,当X1既定时(即不受X1的影响),表示Y与X2之间相关关系的指标,称为偏相关系数,记做。(3分)28.异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称随机项具有异方差性。(3分)29.戈德菲尔特-匡特检验:该方法由戈德菲尔特(S.M.Goldfeld)和匡特(R.E.Quandt)于1965年提出,用对样本进行分段比较的方法来判断异方差性。(3分)30.怀特检验:该检验由怀特(White)在1980年提出,通过建立辅助
7、回归模型的方式来判断异方差性。(3分)31.戈里瑟检验和帕克检验:该检验法由戈里瑟和帕克于1969年提出,其基本原理都是通过建立残差序列对解释变量的(辅助)回归模型,判断随机误差项的方差与解释变量之间是否存在着较强的相关关系,进而判断是否存在异方差性。(3分)32.序列相关性:对于模型随机误差项互相独立的基本假设表现为(1分)如果出现即对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性(SerialCorrela
此文档下载收益归作者所有