欢迎来到天天文库
浏览记录
ID:25811659
大小:1.17 MB
页数:11页
时间:2018-11-22
《中考数学中二次函数压轴题分类总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数的压轴题分类复习一、抛物线关于三角形面积问题例题二次函数的图象,其顶点坐标为M(1,).(1)求出图象与轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.练习:1.如图.平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,线段AB交y轴
2、与点E.(1)求点E的坐标;(2)求抛物线的函数解析式;yxOBNAMEF(3)点F为线段OB上的一个动点(不与O、B重合),直线EF与抛物线交与M、N两点(点N在y轴右侧),连结ON、BN,当点F在线段OB上运动时,求BON的面积的最大值,并求出此时点N的坐标;..2.如图,已知抛物线交x轴的正半轴于点A,交y轴于点B.(1)求A、B两点的坐标,并求直线AB的解析式;(2)设()是直线上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF.若正方形PEQF与直线AB有公共点,求x的取值范
3、围;(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.二、抛物线中线段长度最小问题例题如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴,QD交抛物线于点D,求线段QD长度的最大值.[中国#@*教~育出&版网]..
4、练习:1.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
5、三、抛物线与线段和最小的问题例题如图,已知抛物线与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标...练习:1.如图,已知二次函数的图象与坐标轴交于点A(-1,0)和点B(0,-5).(1)求该二次函数的解析式;xOABy(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.2.如图,抛物
6、线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出H的坐标;CEDGAxyOBF(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积...四、抛物线与等腰三角形例题:已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,
7、3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习:1..如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标...2.如图,在平面直角坐标系中,点A
8、的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.3.如图,已知抛物线于x轴交于A
此文档下载收益归作者所有