欢迎来到天天文库
浏览记录
ID:25781990
大小:63.00 KB
页数:11页
时间:2018-11-22
《翁文波的国家周期表》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、翁文波的国家周期表“可公度性”(Commensurability)一词是在天文学中首先提出来的。由于至今还没有人能够提出有说服力的机制理论,一直当做经验关系写入某些天文文献中。可公度性是周期性的扩张,是自然界的一种秩序,所以是一种信息系。为了把可公度的信息系引入到水文预测上,现介绍一下有关史实。 1766年,德国一位中学数学教师提丢斯发现太阳系的大行星与太阳的距离(天文单位)有一个简单的规律性;尔后,德国天文学家波特作了进一步研究,发表了提丢斯波特定律。这个定律可表示为Yi=i, i={(-∞),0,1,2,…}式中,i是整
2、数;Yi是行星到太阳的距离Xi[用天文单位(A.U.)计量]的函数,即1766年,一位名叫体丢斯的德国数学教师在给学生讲述太阳系概况时,要求学生将各大行星到太阳的平均距离记住。可学生怎么也记不住这些毫无规律的数字。体丢斯仔细分析了这些数据,发现并非无规律可循。他先在黑板上写下一个数列,从第二个数开始,后一数正好是前一数的两倍,即:0,3,6,12,24,48,96,192......在每个数上加4,再除以10,便得到: 0.40.71.01.62.85.21019.6...... 水星金星地球火星?木星土星? 以地球到太
3、阳的距离为一个天文单位,其它数字正好是五个行星到太阳的平均距离,只有2.8个天文单位处没有行星,土星以后也没有行星,因为当时知道的最远行星就是土星。体丢斯并没有认为这是个多么了不起的发现,不过把它当做一个教学生巧妙记忆数据的方法,所以当时没有传开。直到1772年,德国天文台台长波德发现了它,觉得很有意思,才将它发表。因此一般称它为"体丢斯-波德"定则。 "体丢斯-波德"定则发表后,很快引起了天文学家的注意。德国天文学家注意到,火星与木星之间的空隙非常大,按"体丢斯-波德"定则,2.8天文单位处没有行星,似乎这里还有个行星没有
4、被发现。正在这时,传来了赫歇耳发现天王星的消息,天王星到太阳的距离为19.2天文单位,跟体丢斯定则预言的19.6基本一致,这更使天文学家坚信2.8天文单位处应该有一个行星。 后来的发现令天文学家有点失望,这地方没有发现大行星,但发现了一个由许多小行星组成的小行星带。到1982年,这里被命名编号的小行星就达2297个,估计总数比这还要多得多。这些小行星是一个大行星瓦解后形成的呢,还是尚未形成大行星的原始块呢?这是天文学上一个有趣的问题,至今没有定论。可公度性11人们在发现了"体丢斯-波德"定则后,又发现,太阳系的一些卫星也不是
5、杂乱无章地分布的,也具有某种规律。 如木星的三个卫星到主星的距离X(1),X(2),X(3)服从下式: 2(X(3)-X(2))=X(2)-X(1) 而土星的四个卫星则服从: 4X(4)+X(3)-5X(2)=5(X(2)-X(1)) 太阳系的行星、卫星分布的这种规律,在数学上称作"可公度性"。 假如有6,15,18三个数,问它们有什么特点?谁都知道,它们都是3的整数倍。如果有一些量,其每一个都是某一共同基础量或量度的整数倍,则称这些量具有可公度性,如6、15、18是可公度的,而6、17、√2则不具有可公度性。
6、有些量,表面上看不具有可公度性,可对它们进行简单的加、减运算后就现出了可公度的"原形"。如6,11,25,9,表面上看,不能同时被任何一个数除尽,但有6+11=17,25+9=34,其结果都是17的倍数,我们也称这些量具有可公度性。可公度性是周期性的推广,周期性则是可公度性的特款。可以说,可公度性是一种广义的周期性。 各大行星到太阳的平均距离、某些卫星到主星的平均距离,也具有这种广义的周期性。表面上看这些数据是不可公度的,但进行简单的加、减处理后就表现出了可公度性。如将各大行星到太阳的距离减去0.4再乘以10,其结果都是3的
7、倍数。上面所列的木星、土星的卫星的可公度式,实际上也是说这些卫星到主星的距离进行加、减处理后存在可公度性。一个数乘以正整数是这个数的连续相加,所以当加法看待。 人们知道,太阳系是在漫长的历史中由原始星云凝聚形成的,完全是自然的杰作,不受任何"神"的干预。那么为什么这些行星和部分卫星"排列"得如此有规律呢?其物理机制如何?有什么理论意义?这些可公度式到底有什么意义? 这些问题没有人能够回答,很多人把这些关系当做经验公式写入文献中,不作深入探讨。但是,有一位中国科学家却从中发掘出了新的意义,他的名字叫翁文波。该规律由德国人提休
8、斯最先发现,后由德国天文台长波德发表,被称为“提休斯-波德”定则,在数学上,该法则也被称为可公度性,就是说如果有一些量,其每一个都是某一共同基础量或量度的整数倍,则称这些量具有可公度性。举个最简单的例子,2,4,8,10具有可公度性,都是2的整数倍,再例如3,7,12,8也具
此文档下载收益归作者所有