力学考研面试问题完善版1

力学考研面试问题完善版1

ID:25732253

大小:72.00 KB

页数:6页

时间:2018-11-22

力学考研面试问题完善版1_第1页
力学考研面试问题完善版1_第2页
力学考研面试问题完善版1_第3页
力学考研面试问题完善版1_第4页
力学考研面试问题完善版1_第5页
资源描述:

《力学考研面试问题完善版1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、仅供参考!材料力学1.基本假设:连续性、均匀性、各项同性、小变形。2.杆件的四种基本变形:拉压、剪切、弯曲、扭转。3.材力研究问题的主要手段:静力平衡条件、物理条件、变形协调条件(几何条件)。4.角应变如何定义?为什么不能以某点微直线段的转角来定义某点的角应变?某点处两垂直微直线段的相对转角;排除刚性转动的影响。5.冷作硬化对材料有何影响?提高材料的屈服应力。6.什么是圆杆扭转的极限扭矩?使圆杆整个横截面的切应力都达到屈服极限时所能承受的扭矩。7.杆件纯弯曲时的体积是否变化?拉压弹性模量不同时体积会发生变化。8.材料破坏的基本形式:流动、断裂9.四大强度理论?哪些是

2、脆性断裂的强度理论,哪些是塑性屈服的强度理论?1、最大拉应力理论:  这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。σb/s=[σ],所以按第一强度理论建立的强度条件为:σ1≤[σ]。    2、最大伸长线应变理论:  这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。εu=σb/E;ε1=σ

3、b/E。由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E,所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。3、最大切应力理论:  这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。τmax=τ0。依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。按第三强度理论的强度条件为:σ1-σ3≤[σ]。4、形状改变比能理论:

4、  这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。发生塑性破坏的条件,所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]10.斜弯曲:梁弯曲后挠曲线所在平面与载荷作用面不在同一平面上。11压杆失稳时将绕那根轴失稳?惯性矩最小的形心主惯性轴。12为什么弹性力学中对微元体进行分析时,两侧应力不同(如,),而材料力学中对微元体进行分析时,两侧应力相同(均为)?因为材料力学中没有考虑体力的影响,而实质上弹性力学

5、中记及体力的影响之后所得平衡微分方程就是体力项与不同侧多出的一阶项的平衡关系。弹性力学1.材料力学、结构力学、弹性力学的研究内容材料力学:求杆件在四种基本变形下的应力、应变、位移,并校核其刚度、强度、稳定性;结构力学:求杆系承载时的……弹性力学:研究各种形状结构在弹性阶段承载时的……2.弹性力学基本假设:连续性、线弹性、均匀性、各项同性、小变形。3.理想弹性体的概念:满足基本假设前4个。4.弹性力学解为什么一般比材料力学解精确?材力在研究问题时除了从静力学、物理学、几何学三方面分析时,还用了一些针对特定问题的形变或应力分布条件(如杆件拉压、扭转、弯曲时都用了平面假设

6、),而弹性力学除了从基本的三个方程外,一般没有用这些假设,故……5.举例说明体力的概念:重力、惯性力6.面力正负号的规定方法:正面正向负面负向为正。7.小变形假设的作用:可略去各种高阶项,使问题的控制方程,包括代数方程和微分方程均化为线性方程。8.平面应力和平面应变问题区别?(可以分别从几何特征、外力特征、变性特征进行说明,P9-10)平面应力和平面应变都是起源于简化空间问题而设定的概念.平面应力:只在平面内有应力,与该面垂直方向的应力可忽略,例如薄板拉压问题.平面应变:只在平面内有应变,与该面垂直方向的应变可忽略,例如水坝侧向水压问题.具体说来:平面应力是指所有的

7、应力都在一个平面内,如果平面是OXY平面,那么只有正应力σx,σy,剪应力τxy(它们都在一个平面内),没有σz,τyz,τzx.平面应变是指所有的应变都在一个平面内,同样如果平面是OXY平面,则只有正应变εx,εy和剪应变γxy,而没有εz,γyz,γzx.举例说来:平面应变问题比如压力管道、水坝等,这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束.平面应力问题讨论的弹性体为薄板,薄壁厚度远远小于结构另外两个方向的尺度.薄板的中面为平面,其所受外力,包括体力均平行于中面面内,并沿

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。