欢迎来到天天文库
浏览记录
ID:25715015
大小:146.50 KB
页数:8页
时间:2018-11-22
《《圆锥曲线和方程》单元教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、课题名称《圆锥曲线与方程》单元教学设计设计者姓名郭晓泉设计者单位华亭县第二中学联系电话13830317260电子邮箱guoxiaoquan114@163.com《圆锥曲线与方程》单元教学设计(郭晓泉甘肃省华亭县第二中学13830317260)一、教学内容分析1、实际背景分析该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代
2、航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。2、数学视角分析《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何
3、特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。3、课程标准视角分析(1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经
4、历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。(2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分知识的学习中,牵涉到数和形的结合问题,这里有直观感知,观察发现,归纳类比、抽象概括,符号(方程)表示,运算求解,数学建模等,通过这些方法在学生学习中的运用,来提高学生的数学思维能力。(3)发展学生的应用意识。圆锥曲线几何性质在现实中有很多重要的应用,让学生通过学习去
5、解决一些实际问题,如求某航天器的运行轨迹方程问题,确定生源的问题,等等。另外,在解决圆锥曲线有关问题时,对运算求解能力,分析问题、解决问题的能力要求都比较高,这需要学生综合利用前面所学的基本知识来解决问题,在教学中应根据实际情况来采用适当的方法发展学生的应用意识。(4)巩固“双基”,发展思想。在学习中,仍然要以基础知识的夯实为主,让学生掌握圆锥曲线的定义、方程、图形及几何性质,形成基本的解决问题的技能,在此基础上,体会数学结合思想、类比思想(研究双曲线和抛物线方程、性质时类比椭圆的进行)、函数与方程
6、思想的应用(在求解直线与圆锥曲线有关问题时,要利用函数与方程思想),提高学生的运算求解能力和分析解决问题的能力。(5)信息技术手段的应用:在学生直观感知圆锥曲线图形的基础上,可以借助信息技术手段来做出椭圆、双曲线、抛物线图形,利用动态演示来帮助学生观察学习,例如对离心率的教学,通过演示椭圆的变化来让学生认识离心率的作用,加深学生的影响。4、教材中几个值得注意的问题(1)注意知识内容的衔接。必修《数学2》中的直线与方程、圆与方程,以及选修2-1(选修1-1)中的圆锥曲线与方程,系列4中的“选修4-4坐
7、标系与参数方程”共同构成了经典的解析几何内容,教学时,应该注意这些知识的衔接,把圆锥曲线的教学放在整个解析几何内容教学中通盘来考虑,如课标中对椭圆的要求是“理解”,对双曲线的要求是“了解”,而抛物线的内容理科要求“理解”,文科要求“了解”,这些要求应该落实好,最好不要超越,研究和学习的过程从研究直线与方程、圆的方程的方法入手,充分利用坐标法,将各部分内容有机地联系在一起。(2)圆锥曲线的第二定义和统一定义不做作,对非标准形式的圆锥曲线方程也不作要求。在教材中,对圆锥曲线的第二定义,都是在习题当中给出
8、的,对学有余力的学生,数学学习兴趣浓厚的学生,可以引导他们去解决这些问题。关于圆锥曲线的统一定义及非标准形式的方程,在教材中是以“阅读和思考”的方式给出的,可以让学生作为课外延伸学习的内容,在具体的教学中不可补充这样的教学内容,以免增加学生的学习负担,增大教学的难度。(3)关于曲线方程和函数与图像之间的关系问题。这两者是不同的研究对象,但它们之间有一定的联系,也存在一定的区别。在教材中,安排了“探究与发现:为什么二次函数2yaxbxc(a0)的图像是抛物线”。
此文档下载收益归作者所有