欢迎来到天天文库
浏览记录
ID:25475122
大小:243.81 KB
页数:6页
时间:2018-11-20
《函数的基本性质练习题(精华)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高一数学------函数的基本性质一、、知识点:本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。对象――即集合中的元素。集合是由它的元素唯一确定的。整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。确定的――集合元素的确定性――元素与集合的“从属”关系。不同的――集合元素的互异性。2、有限
2、集、无限集、空集的意义有限集和无限集是针对非空集合来说的。我们理解起来并不困难。我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ(空集)与{Φ}(集合中含有一个元素,即空集)”的关系。几个常用数集N(自然数集)、N*(正整数集)、N+(正整数集)、Z(整数集)、Q(有理数集)、R(实数集)3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:6①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的
3、规律的有限集,如{1,2,3,…,100}③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别:a表示一个元素,{a}表示一个集合●注意用列举法表示集合时,集合元素的“无序性”。(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x
4、y=x2},{y
5、y=x2},{(x,y)
6、y=x2}是三个不同的集合。4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关
7、系是元素与集合之间的关系。“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号●注意辨清Φ与{Φ}两种关系。5、集合的运算集合运算的过程,是一个创造新的集合的过程。在这里,我们学习了三种创造新集合的方式:交集、并集和补集。一方面,我们应该严格把握它们的运算规则。同时,我们还要掌握它们的运算性质:函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意
8、x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。6注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关
9、于y轴对称;②设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数);(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。(3)简单性质
10、①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。3、函数的周期性如果函数y=f(x)对于定义域内任意的x,存在一个不等于0的常数T,使得f(x+T)=f(x)恒成立,则称函数f(x)是周期函数,T是它的一个周期.性质:①如果T是函数f(x)的周期,则kT(k∈N+)也是f(x)的周期.②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为。6一、典型选择题1.
11、在区间上为增函数的是( )A. B. C. D.(考点:基本初等函数单调性)2.函数是单调函数时,的取值范围 ( )A. B. C. D.(考点:二次函数单调性)3.如果偶函数在具有最大值,那么该函数在有 ( )A.最大值 B.最小值 C.没有最大值 D.没有最小值(考点:函数最值)4.函数,是( )A.偶函数 B.奇函数
此文档下载收益归作者所有