碳化硅功率器件的发展现状与在电力系统中的应用展望

碳化硅功率器件的发展现状与在电力系统中的应用展望

ID:25378162

大小:236.71 KB

页数:8页

时间:2018-11-19

碳化硅功率器件的发展现状与在电力系统中的应用展望_第1页
碳化硅功率器件的发展现状与在电力系统中的应用展望_第2页
碳化硅功率器件的发展现状与在电力系统中的应用展望_第3页
碳化硅功率器件的发展现状与在电力系统中的应用展望_第4页
碳化硅功率器件的发展现状与在电力系统中的应用展望_第5页
资源描述:

《碳化硅功率器件的发展现状与在电力系统中的应用展望》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、WORD格式可编辑碳化硅功率器件的发展现状及其在电力系统中的应用展望摘要:碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管、MOSFET、IGBT,并对其在电力系统的应用现状与前景进行展望。关键词:碳化硅;功率器件;电力系统1引言理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的di/dt和d

2、u/dt,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源、电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功

3、率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率

4、器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管[1],10kV的碳化硅MOSFET[2]和13~15kV[3-4]专业技术分享WORD格式可编辑碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了新一轮技术革命,必将在众多应用领域,如电力系统中的高压领域产生深远的影响。2碳化硅材料及功率器件进展2.1碳化硅材料在体单晶材料方面,SiC单晶衬底已经商品化。目前国际上已有76.2m

5、m和101.6mm的SiC抛光衬底材料出售,具有批量生产能力的公司超过十家。高功率SiC器件的芯片面积很大(单胞面积>1cm),需要大尺寸和低缺陷的衬底材料,尤其需要很低的微管缺陷密度。在这种需要的激励之下并经过长期的技术积累,困扰SiC单晶生长的微管缺陷控制技术也在2004年获得突破。如日本Toyata公司采用“重复a面”(repeateda-face:RAF)生长技术,实现了50.8mmSiC单晶的无微管生长,同时也将位错密度降低到250/cm2以下[5]。2005年美国Intrinsic公司也获得了零微管(ZeroMicropipe,简称ZMP)的SiC单晶

6、技术,并于2006年生长出无微管的76.2mmSiC衬底材料。在并购了Intrinsic公司获得零微管技术后,Cree公司直径101.6mm的4H-SiC导通衬底的微管密度最低达0.1/cm2,甚至零微管,使得用于制作面积为1cm2的功率器件能够实现90%以上的器件成品率。外延材料方面,SiC外延生长设备的规模也不断增大,能够同时生长多片大尺寸的SiC外延。例如瑞典Epigress公司的VP2800HW型热壁式SiC外延生长系统能够同时生长10片101.6mm高质量SiC外延,为了把SiC功率器件抵抗电压提高到10kV,SiC外延的厚度要达到100μm。在SiC外

7、延研究中,一个重要指标是外延层少子寿命。少子寿命不仅反映了深能级密度和材料缺陷密度等重要外延参数,而且直接决定了高功率SiC器件的通流能力。据理论研究,20kVSiC器件中少子寿命应在10s以上,否则通流能力很弱。目前日本NEDO公司利用垂直型外延炉实现了高质量的厚达28μm的外延,在50.8mm上取得了少子寿命分布图,其平均值为1s[6]。SiC外延技术研究的另一个重要问题是4°偏轴4H-SiC衬底上的高质量外延生长。4°偏轴衬底凭借其成本优势逐渐成为大尺寸4H-SiC的主流,但与8°偏轴相比小角度偏轴衬底上外延生长的难度较高,台阶聚并(step-bunchin

8、g)现象严

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。