相似三角形的判定方法

相似三角形的判定方法

ID:25312210

大小:663.50 KB

页数:10页

时间:2018-11-19

相似三角形的判定方法_第1页
相似三角形的判定方法_第2页
相似三角形的判定方法_第3页
相似三角形的判定方法_第4页
相似三角形的判定方法_第5页
资源描述:

《相似三角形的判定方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相

2、似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其

3、符号语言:  ∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。例1、已知:如图,∠1=∠2=∠3,求证

4、:△ABC∽△ADE.....ABCDEF第4题例2、如图,E、F分别是△ABC的边BC上的点,DE∥AB,DF∥AC,求证:△ABC∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。简单说成:两边对应成比例且夹角相等,两三角形相似.例1、△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.例2、如图,点C、D在线段AB上,△PCD是等边三角形。(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当

5、△ACP∽△PDB时,求∠APB的度数。判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。简单说成:三边对应成比例,两三角形相似.....强调:①有平行线时,用预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.例1、已知:如图,在正方形AB

6、CD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB⊥BD,CD⊥BD,P为BD上一动点,AB=60cm,CD=40cm,BD=140cm,当P点在BD上由B点向D点运动时,PB的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、如图AD⊥AB于D,CE⊥AB于E交AB于F,则图中相似三角形的对数有       对。例4、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。求证:(

7、1)△AME∽△NMD(2)ND2=NC·NB  ①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;  ②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.(....直角三角形被斜边上的高分成的两个直三角形的与原三角形相似)③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.④补充射影定理。特殊

8、情况:第一:顶角(或底角)相等的两个等腰三角形相似。第二:腰和底对应成比例的两个等腰三角形相似。第三:有一个锐角相等的两个直角三角形相似。第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SASSSSAAS(ASA)HL相似

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。