地铁站乘客上下车效率因素影响分析论文

地铁站乘客上下车效率因素影响分析论文

ID:25206781

大小:55.50 KB

页数:7页

时间:2018-11-18

地铁站乘客上下车效率因素影响分析论文_第1页
地铁站乘客上下车效率因素影响分析论文_第2页
地铁站乘客上下车效率因素影响分析论文_第3页
地铁站乘客上下车效率因素影响分析论文_第4页
地铁站乘客上下车效率因素影响分析论文_第5页
资源描述:

《地铁站乘客上下车效率因素影响分析论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、地铁站乘客上下车效率因素影响分析论文..毕业摘要地铁站内乘客上下车的效率影响着地铁的运营效率和服务水平。其中有自然因素和人为因素。通过实地调查测量,搜集整理数据,运用方差分析的数学方法对地铁乘客上下车效率因素影响进行了定量研究。认为当前的地铁硬件设施水平已经基本能够满足人们普遍的上、下车要求,影响乘客上下车效率的主要是人为因素,乘客群体层次差异对整体效果有一定的影响。关键词地铁,上下车效率,方差分析地铁车站作为一个特殊的活动空间,人们的走行速度受到不同因素的制约。当前,随着人们出行水平的提高、时间观念的增强以及对安全的需求增长,

2、行人交通1越来越多地受到研究人员的关注2。在地铁车站中,上下车是主要的交通活动之一。上下车的速度不仅影响着地铁站内人群的活动,同时也影响地铁列车的停车时间以及地铁的服务水平。对地铁乘客上下车效率进行因素影响分析,对改善地铁乘车环境,..毕业提高地铁服务水平具有重要的意义。地铁乘客上下车速度受到很多因素的影响,自然因素中有气候条件、乘车时间等;社会因素中有乘客群社会关系、乘客社会层次等;硬件因素中有站台布设、列车型号等;个人因素中有性别、年龄差异,生活习惯等。分析出每种因素的影响将是一个庞大的工程,需要不断地深入研究。迄今为止,国

3、内外对行人交通研究深度远远不及机动车交通,其调查和分析方法需要不断地改进和完善。传统的研究仅仅对影响上下车的因素进行定性的研究。本文仅通过对北京地铁1号线、2号线和13号线进行实地调查统计,并对统计数据整理分析,采用方差分析的数学方法对影响地铁站内乘客上下车效率的主要因素进行定量分析研究。1方差分析法方差分析法是常见的数理统计分析方法,由英国统计学家R.A.Fisher首创;为纪念Fisher,以F命名,故方差分析又称F检验,其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。方差分析是数

4、理统计的基本方法之一,它实质上是研究自变量(因素)与因变量(随机变量)的相关关系,辨明某个因素对因变量是不是有显著影响。2地铁乘客上下车行为特点乘客上下车是乘客乘车的一个重要组成部分,是发生在站台和列车连接点(车门)处的行为,如果控制失当很容易发生拥挤和堵塞,甚至发生危险事故。对乘客上下车花费时间进行实测是我们掌握乘客上下车行为主要特征的重要手段之一。乘客上下车花费时间的实测方法主要有现场人工观测、摄影、摄像等。通过大量观测,可以总结出以下一些地铁乘客上下车行为特征:(1)当上下车乘客都赶时间时,整体上下车速度才可能加快;个别乘

5、客上下车速度快不代表上下车整体速度快;(2)乘客上下车速度很容易受上下车乘客群中的个别乘客影响,如可能负重过多、行动不便的乘客存在;(3)个别乘客上下车效率具有随机性,乘客数量与乘客上下车平均花费时间没有明显的线性关系;(4)由于秩序混乱乘客上下车互相影响,乘客上下车所用的总时间可能是某一方乘客上车或下车所用时间。3地铁乘客上下车速度实测和统计2006年7月25、26日两天,分别对北京地铁1号线、2号线和13号线的连续乘客上下车花费时间进行了抽查实测。抽查实测地点分别为:北京地铁1号线的西单、王府井地铁站,2号线的安定门、积水潭

6、地铁站,13号线的五道口、回龙观地铁站。观察发现所选车站的客流结构相对比较相似,包括上班、上学、出差、购物和娱乐客流等。实测的基本工具为秒表。进行实测获取的基本量为:连续上下车乘客数量,上下车所用时间。为了取得可用数据,先进行了实测训练并达到比较稳定的状态。连续上下车乘客是指当列车停稳后已经准备好上下车的乘客;上下车所用时间是指所有连续上下车乘客上下车完成过程所花费的时间。通过数学方法上下车所用时间与连续上下车乘客数量相除得到乘客上下车花费时间。数据整理和统计分析步骤为:首先将实测数据分类输入,采用Excel软件进行编程;对各组

7、数据进行筛选,去除不合理的数据;然后用程序计算,并用方差分析法进行分析。为更好地应用方差分析法,将所有影响因素综合为两个大的因素,分别为自然因素和人为因素。自然因素指比较客观的因素,基本属于自然或地铁硬件设施方面的因素;此因素反映了由于因素的各个水平的不同作用在数据中引起的波动。人为因素指除客观因素以外与乘客本身相关的各种因素,此因素反映了由于随机误差的作用而在数据中引起的波动。表1是3条地铁线自然因素的异同。所列自然因素包括:车辆型号、车厢总数、车门总数、线路特征、天气情况、调查时间、车门与站台距离、车门与站台高度、车门宽度、

8、调查车站等。人为因素包括:乘客同时上下车人数、乘客年龄、乘客性别、上下车秩序、乘客负重、乘客群文化水平、乘客群社会关系、乘客出行意图等。由于人为因素不容易量化,在此仅列出影响因素。北京地铁1号线抽查实测乘客上下车花费时间数据14组;北京地铁2号线抽查实测乘客上下

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。