数字温度传感器课程设计论

数字温度传感器课程设计论

ID:25199673

大小:759.00 KB

页数:22页

时间:2018-11-18

数字温度传感器课程设计论_第1页
数字温度传感器课程设计论_第2页
数字温度传感器课程设计论_第3页
数字温度传感器课程设计论_第4页
数字温度传感器课程设计论_第5页
资源描述:

《数字温度传感器课程设计论》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、目录课题要求:41.原理分析42.方案选择43.元器件选择53.1单片机53.2温度传感器73.3显示屏83.4蜂鸣器93.5其他元件94.proteus原理图绘制94.1设计步骤94.2设计过程94.2.1单片机系统模块104.2.2晶体振荡模块104.2.3扬声器报警模块114.2.4温度传感器模块124.2.5液晶显示模块135.综合调试166.总结17附录118附录221附录323附录424基于数字温度传感器的数字温度计设计报告课题要求:利用数字温度传感器DS18B20与单片机结合来测量温

2、度。利用数字温度传感器DS18B20测量温度信号,计算后在LED数码管上显示相应的温度值。其温度测量范围为−55℃~125℃,精确到0.5℃。数字温度计所测量的温度采用数字显示,控制器使用单片机AT89C51,测温传感器使用DS18B20,,实现温度显示。1.原理分析(刘星)采用AT89C51单片机作为控制核心对温度传感器DS18B20控制,读取温度信号并进行计算处理,并送数码管显示。采用数字温度芯片DS18B20测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。

3、且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0—100摄氏度时,最大线形偏差小于1摄氏度。DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制芯片AT89C51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用AT89C51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制而且体积小,硬件实现简单,安装方便。用AT89C51芯片控制温度传感器DS18B2

4、0进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度数据。⒉方案选择(刘星)按照系统设计功能的要求,确定系统由3个大的模块组成:主控制器、测温电路和显示电路。由AT

5、89C51单片机组成硬件设计,AT89C51的EA接高电平,其外围电路提供能使之工作的晶振脉冲、复位按键,四个I/O分别接8路的单列IP座方便与外围设备连接。当AT89C51芯片接到来自温度传感器的信号时,其内部程序将根据信号的类型进行处理,并且将处理的结果送到显示模块,发送控制信号控制各模块。21⒊元器件选择(黄学然)3.1单片机AT89C51芯片:AT89C51是一个低电压,高性能CMOS8位单片机,片内含4K的可反复擦写的FLASH只读存储器和128BYTES的随机存取数据存储器,40个引脚

6、,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口。AT89C51可以按照常规方法进行编程,也可以在线编程。器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51令系统,片内置通用8位中央处理器和Flash存储单元,其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案。主要特性:·与MCS-51兼容·4

7、K字节可编程FLASH存储器·寿命:1000写/擦循环21·数据保留时间:10年·全静态工作:0Hz-24MHz·三级程序存储器锁定·128×8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路管脚说明:VCC:供电电压。GND:接地。P0:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在

8、FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。