初等数论(闵嗣鹤版)课件

初等数论(闵嗣鹤版)课件

ID:25193624

大小:4.96 MB

页数:106页

时间:2018-11-16

初等数论(闵嗣鹤版)课件_第1页
初等数论(闵嗣鹤版)课件_第2页
初等数论(闵嗣鹤版)课件_第3页
初等数论(闵嗣鹤版)课件_第4页
初等数论(闵嗣鹤版)课件_第5页
资源描述:

《初等数论(闵嗣鹤版)课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章整数的可除性一初等数论及其主要内容数论是研究整数性质的一门很古老的数学分支,其初等部分是以整数的整除性为中心的,包括整除性、不定方程、同余式、连分数、素数(即质数)分布以及数论函数等内容,统称初等数论(elementarynumbertheory)。初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。自古以来,数学家对于整数性质的研究一直十分重视,初等数论的大部份内容早在古希腊欧几里德的《几何原本》(公元前3世纪)中就已出现。欧几里得证明了素数有无穷多个,他还给出

2、求两个自然数的最大公约数的方法,即所谓欧几里得算法。我国古代在数论方面亦有杰出之贡献,现在一般数论书中的“中国剩余定理”,正是我国古代《孙子算经》中的下卷第26题,我国称之为孙子定理。近代初等数论的发展得益於费马、欧拉、拉格朗日、勒让德和高斯等人的工作。1801年,德国数学家高斯集中前人的大成,写了一本书叫做《算术探究》,开始了现代数论的新纪元。高斯还提出:“数学是科学之王,数论是数学之王”。二数论的发展由于自20世纪以来引进了抽象数学和高等分析的巧妙工具,数论得到进一步的发展,从而开阔了新的研究领

3、域,出现了代数数论、解析数论、几何数论等新分支。而且近年来初等数论在计算机科学、组合数学、密码学、代数编码、计算方法等领域内更得到了广泛的应用,无疑同时也促进着数论的发展。我国近代:在解析数论、丢番图方程,一致分布等方面有过重要贡献,出现了华罗庚、闵嗣鹤等一流的数论专家,其中华罗庚在三角和估值、堆砌素数论方面的研究享有盛名。特别是在“篩法”、歌德巴赫猜想方面的研究,已取得世界领先的优异成绩。陈景潤在1966年证明歌德巴赫猜想方面证明了”1+2”(一个大偶数可以表示为一个素数和一个不超过两个素数的乘积

4、之和)三、几个著名数论难题初等数论是研究整数性质的一门学科,历史上遗留下来没有解决的大多数数论难题其问题本身容易搞懂,容易引起人的兴趣,但是解决它们却非常困难。其中,非常著名的问题有:哥德巴赫猜想;费尔马大定理;孪生素数问题;完全数问题等。1742年,由德国中学教师哥德巴赫在教学中首先发现的。1742年6月7日,哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:一个大于6的偶数可以表示为不同的两个质数之和。陈景润在1966年证明了“哥德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个

5、素数的乘积之和”〔所谓的1+2〕,是筛法的光辉顶点,至今仍是“哥德巴赫猜想”的最好结果。1、哥德巴赫猜想:2、费尔马大定理:费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,世人冠以“业余王子”之美称。在三百七十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理。经过8年的努力,英国数学家安德鲁·怀尔斯终于在1995年完成了该定理的证明。方程无非0整数解3、孪生素数问题存在无穷多个素数p

6、,使得p+2也是素数。究竟谁最早明确提出这一猜想已无法考证,但是1849年法国数学家AlphonsedePolignac提出猜想:对于任何偶数2k,存在无穷多组以2k为间隔的素数。对于k=1,这就是孪生素数猜想,因此人们有时把AlphonsedePolignac作为孪生素数猜想的提出者。不同的k对应的素数对的命名也很有趣,k=1我们已经知道叫做孪生素数;k=2(即间隔为4)的素数对被称为cousinprime;而k=3(即间隔为6)的素数对竟然被称为sexyprime(不过别想歪了,之所以称为sex

7、yprime其实是因为sex正好是拉丁文中的6。)4、最完美的数——完全数问题下一个具有同样性质的数是28,28=1+2+4+7+14.接着是496和8128.他们称这类数为完美数.欧几里德在大约公元前350-300年间证明了:注意以上谈到的完全数都是偶完全数,至今仍然不知道有没有奇完全数。完美数又称为完全数,最初是由毕达哥拉斯的信徒发现的,他们注意到,数6有一个特性,它等于它自己的因子(不包括它自身)的和,如:6=1+2+3.若是素数,则是完全数在培养中学生思维能力方面大有作用。四、初等数论在中小

8、学教育中的作用国际数学奥林匹克从1959年起到2002年已经举行了43届比赛,大致统计,在总共260道题目中,可以主要用初等数论知识来解及初等数论知识有关的约有82题,约占31.5%。第一节整除的概念带余数除法2、整除的基本定理思考:逆命题是否成立?1、m

9、(a±b)→m

10、a,m

11、b2、m

12、(a±b),m

13、a→m

14、b定理2’特例:m

15、

16、am

17、aq3、带余数除法例1求当b=15时,a取下列数值时的不完全商和余数.1、a=81;2、a=-81;例2(1)一个数除以2,余数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。