核磁共振的原理与应用发展

核磁共振的原理与应用发展

ID:25092575

大小:122.50 KB

页数:11页

时间:2018-11-18

核磁共振的原理与应用发展_第1页
核磁共振的原理与应用发展_第2页
核磁共振的原理与应用发展_第3页
核磁共振的原理与应用发展_第4页
核磁共振的原理与应用发展_第5页
资源描述:

《核磁共振的原理与应用发展》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD格式可编辑核磁共振的原理及其应用发展摘 要:核磁共振是能够深入到物质内部而不破坏被测量对象的一种分析物质构造的现代技术,它通过利用原子核在磁场中的能量变化来获得关于原子核的信息,具有迅速、准确、分辨率高等优点,因而在科研和生产中获得了广泛的应用。本文主要介绍了核磁共振技术的基本原理,以及核磁共振在化学化工、生物化学、医药等方面的应用,并指出核磁共振波谱技术将成为21世纪一个异常广阔的谱学研究领域.关键词:核磁共振;NMR谱仪引言核磁共振(NuclearMagneticResonance,NMR)波谱学是一门发展非常迅速的科学。核磁共振是根据有磁的原子核,在磁

2、场的作用下会引起能级分裂,若有相应的射频磁场作用时,在核能级之间将引起共振跃迁,从而得到化学结构信息的一门新技术。最早于1946年由哈佛大学的伯塞尔(E.M.Purcell)和斯坦福大学的布洛赫(F.Bloch)等人用实验所证实[1]。两人由此共同分享了1952年诺贝尔物理学奖[2]。核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段[3],在物理、化学、生物、医药、食品等领域得到广泛应用,在化学中更是常规分析不可少的手段。从70年代开始,在磁共振频谱学和计算机断层技术等基础上,又发展起一项崭新的医学诊断技术,

3、即核磁共振成像技术,并在医学临床上获得巨大成功。本文主要介绍了核磁共振技术及其在化学领域的应用进展。1.核磁共振原理  泡利(W.Pauli)在1924年首先提出原子核具有磁矩,并认为核磁矩与其本身的自旋运动相联系,用此理论成功地解释了原子光谱的超精细结构[4]。 核磁矩μ与核自旋角动量L之间的关系为:       专业技术资料整理WORD格式可编辑式中是质子质量,e为单位电荷,g称为朗德因子(Landefactor),对于不同的核它有不同的值,它反映核内部自旋和磁矩的实验关系。实验工作中,常常用磁旋比(Magnetogyric-ratio)γ这个物理量表示核磁矩与

4、核自旋的关系,其定义为:       γ随核的结构不同而不同,对于氢核,即质子,核磁矩比电子的自旋磁矩小得多,一般要小三个数量级。 在外磁场中,原子核的自旋角动量是空间量子化的以外磁场B的方向为Z轴的正向,则核自旋角动量的空间量子化表示为         式中M是核自旋量子数,对于具有自旋量子数为I的核,M的取值为-I,-I+1,……,I,共有2I+1个值.对于不同的核,I可能为整数或半整数或零。  核自旋的空间取向,由(1)式[5]        由(4)和(5)式可得g因子与磁旋比γ的关系为          可见,g因子也是一种磁旋比。2.核磁共振技术的发展1

5、930年代,物理学家伊西多-拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。1946年两位美国科学家发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,专业技术资料整理WORD格式可编辑再施加以特定频率的射频场,就会发现原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。1964年后,核磁共振谱仪经历两次重大的技术革命,其一是磁场超导化;其二是脉冲傅立叶变换技术。从根本上提高了核磁共振波谱仪的灵敏度,同时谱仪的结构也有了很大的变化

6、。1964年美国Varian公司研制出世界上第一台超导磁场的核磁共振谱仪(HR—200型,200MHZ,场强4·74T)。2004年布鲁克Biospin公司推出了全球第一款用于核磁共振领域的900MHz主动屏蔽式超导核磁共振磁体产品—900US2TMmagnet,是当时最高场强的主动屏蔽式磁体产品。2002年北京大学安装成功的由世界最大的波谱磁体生产厂家布鲁克公司提供的中国首台800MHz核磁共振仪填补了国内超高场谱仪的空白,也使北大成为世界上具有重要影响的超高场新用户。2.1 二维核磁共振技术1971年,Jeener首先提出了二维核磁概念。80年代,Ernst小组

7、详细分析了二维实验,全面系统论述了二维核磁共振原理。后经Ernst和Free-man等小组的卓越工作,使二维核磁共振成为常规实验。因此,Ernst获得了诺贝尔化学奖。现在,二维核磁共振技术已被广泛应用于复杂生物大分子的研究,尤其对于那些分子量不太大的物质(M小于10kd),高分辨核磁技术给出的结构,可与X射线衍射相媲美。随着核磁共振仪兆数的提高,分辨率的增加,以及标记技术的发展,大分子量的蛋白结构也能用核磁共振技术确定。新兴起的三维核磁共振(3DNMR)技术也开始应用于生物分子的研究,有人用13C,15N,2H标记的三维核磁共振研究了分子量小于40kd的蛋白质。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。