欢迎来到天天文库
浏览记录
ID:25036758
大小:381.01 KB
页数:13页
时间:2018-11-17
《No尹长嫦主动控制.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、漳州师范学院毕业论文相同结构与异结构超混沌系统的同步Synchronizationofidenticalandnon-identicalhyperchaossystems姓名:尹长嫦学号:0304031242系别:数学与信息科学系专业:信息与计算科学年级:2003级指导教师:蔡建平2007年5月25日12目录中英文摘要………………………………………………………(Ⅰ)1引言…………………………………………………………………(1)2问题描述和系统模型………………………………………………(1)2.1超混沌的Lü系统………………
2、………………………………(1)2.2超混沌的Rössler系统………………………………………(2)3超混沌Lü系统的混沌同步…………………………………………(3)3.1主动控制同步…………………………………………………(3)3.2数值模拟………………………………………………………(4)4超混沌Rössler系统的混沌同步…………………………………(4)4.1主动控制同步…………………………………………………(4)4.2数值模拟………………………………………………………(6)5超混沌的Lü系统和超混沌的Rössler系统的
3、混沌同步…………(6)5.1主动控制同步…………………………………………………(6)5.2数值模拟………………………………………………………(7)6结论…………………………………………………………………(8)致谢…………………………………………………………………(9)参考文献……………………………………………………………(10)12摘要采用主动控制的方法,使两个相同的超混沌系统和两个不同的超混沌系统实现了同步。本文分别实现了超混沌Lü系统和超混沌Rössler系统的相同结构间的同步,还实现了超混沌Lü系统和超混沌Röss
4、ler系统的异结构同步。主动控制不用构造Lyapunov函数,方法简单有效,实现同步时间短。数值模拟验证了方法的有效性。关键词:超混沌同步;主动控制;Lü系统;Rössler系统AbstractThisworkpresentshyperchaossynchronizationoftwoidenticalhyperchaoticsystemsandoftwodifferenthyperchaoticsystemsbyusingactivecontrol.Synchronizationofidenticalhyperchao
5、ticLüsystemsaswellasidenticalhyperchaoticRösslersystemsareachieved.Furthermore,synchronizationbetweenhyperchaoticLüsystemandhyperchaoticRösslersystemisalsoachievedbyactivecontroltechnique.ThistechniqueissimplewithoutconstructingLyapunovfunctionandthesynchronizati
6、ontimeisshort.Numericalsimulationsareshowntoverifytheresults.Keywords:hyperchaossynchronization;activecontrol;Lüsystem;Rösslersystem121引言混沌系统以其在信息科学、安全通信、生命科学、医学等领域的广大应用前景,已经引起了许多学者的关注。自从Pecora和Caroll提出驱动-响应混沌同步方法以来,便掀起了混沌同步研究的热潮。混沌同步及其应用已成为非线性科学中的一个重要研究课题,并且得到了一
7、系列实现混沌系统同步的控制方法,如:线性或非线性反馈控制、自适应控制、脉冲控制等。但是上面提到的方法和现有的许多方法,大都讨论的是两个相同的低维混沌系统的同步,关于两个不同系统间的同步研究相对较少,鲜见两个不同的较高维超混沌系统间的同步。超混沌系统具有多个正的Lyapunov指数,图像出现多个混沌吸引子,因此它有着更为复杂的运动轨迹。这使得混沌信号具有很高的复杂度,与混沌相比更难破译,保密性更好,更适用于保密通信。近年来越来越多的混沌同步在安全通信中广泛应用,这使得研究两个不同的超混沌系统同步变得更重要。本文基于主动控制
8、技术,实现了两个相同的超混沌Lü系统和两个相同超混沌Rössler系统的相同结构的同步,还实现了超混沌Lü系统和超混沌Rössler系统的异结构同步。主动控制不用构造Lyapunov函数,方法简单有效,实现同步时间短。数值模拟验证了方法的有效性。2问题描述和系统模型定义两个非线性混沌系统(1)式中,为的可微函数。系统
此文档下载收益归作者所有