气动机械手关节结构设计及运动学仿真分析毕业论文

气动机械手关节结构设计及运动学仿真分析毕业论文

ID:2503296

大小:1.49 MB

页数:36页

时间:2017-11-16

气动机械手关节结构设计及运动学仿真分析毕业论文_第1页
气动机械手关节结构设计及运动学仿真分析毕业论文_第2页
气动机械手关节结构设计及运动学仿真分析毕业论文_第3页
气动机械手关节结构设计及运动学仿真分析毕业论文_第4页
气动机械手关节结构设计及运动学仿真分析毕业论文_第5页
资源描述:

《气动机械手关节结构设计及运动学仿真分析毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、气动机械手关节结构设计及运动学仿真分析毕业论文1第1章绪论1.1研究气动机械手的意义近20年来,气动技术的应用领域迅速拓宽,尤其是在各种自动化生产线上得到广泛应用。电气可编程控制技术与气动技术相结合,使整个系统自动化程度更高,控制方式更灵活,性能更加可靠;气动机械手、柔性自动生产线的迅速发展,对气动技术提出了更多更高的要求;微电子技术的引入,促进了电气比例伺服技术的发展。现代控制理论的发展,使气动技术从开关控制进入闭环比例伺服控制,控制精度不断提高;由于气动脉宽调制技术具有结构简单、抗污染能力强和成本低廉等特点,国内外都在大力开发研究[1]。从各国的行业统计资料来看,近30多年来,气

2、动行业发展很快。20世纪70年代,液压与气动元件的产值比约为9:1,而30多年后的今天,在工业技术发达的欧美、日本国家,该比例已达到6:4,甚至接近5:5。我国的气动行业起步较晚,但发展较快。从20世纪80年代中期开始,气动元件产值的年递增率达20%以上,高于中国机械工业产值平均年递增率。随着微电子技术、PLC技术、计算机技术、传感技术和现代控制技术的发展与应用,气动技术已成为实现现代传动与控制的关键技术之一。传统的机器人关节多由电机或液(气)压缸等来驱动。以这种方式来驱动关节,位置精度可以达到很高,但其刚度往往很大,实现关节的柔顺运动较困难。而柔顺性差的机器人在和人接触的场合使用时

3、,容易造成人身和环境的伤害。因此,在许多服务机器人或康复机器人研究中,确保机器人的关节具有一定的柔顺性提高到了一个很重要的地位。人类关节具有目前机器人所不具备的优良特性,既可以实现较准确的位置控制又具有很好的柔顺性。这种特性主要是由关节所采用的对抗性肌肉驱动方式所决定的。目前模仿生物关节的驱动方式在仿生机器人中得到越来越多的应用。在这种应用中为得到类似生物关节的良好特性,一般都采用具有类似生物肌肉特性的人工肌肉。36气动肌肉是人工肌肉中出现较早、应用较广泛的一种驱动器,具有重量轻、结构简单及控制容易等优点,在类人机器人、爬行机器人及康复辅助器械中得到了应用。其基本应用形式大都采用一对

4、气动肌肉组成关节的方式。气动肌肉最简单和最常见的使用方式是利用一对气动肌肉以生物体中拮抗肌的形式驱动关节,这种方式克服了气动肌肉变化长度较小的缺点,能够实现大的转动位移。而且由于其类似生物体驱动关节的方式,因此具有刚度和位置能独立控制等仿生关节具有的优点。气动机械手是集机械、电气、气动和控制于一体的典型机电一体化产品。近年来,机械手在自动化领域中,特别是在有毒、放射、易燃、易爆等恶劣环境内,与电动和液压驱动的机械手相比,显示出独特的优越性,得到了越来越广泛的应用。1.2气动机械手在国内外的发展现状及应用由于机器人或机械手都需要能快速、准确的抓取工件,因而对机器人或机械手提出了更高的要

5、求,即他们必须具有高定位精度、能快速反应、有一定的承载能力、足够的空间和灵活的自由度以及在任意位置都能自动定位。传统观点认为,由于气体具有压缩性,因此,在气动伺服系统中要实现高精度定位比较困难(尤其在高速情况下,似乎更难想象)。此外,气源工作压力较低,抓举力较小。气动技术作为机器人中的驱动功能已经被工业界广泛接受,对于气动机器人伺服控制体系的研究起步较晚,但已取得了重要成果,它在工业自动化领域应用正在受到越来越多的广泛关注。90年代初,有布鲁塞尔皇家军事学院Y.Bando教授领导的综合技术部开发研制的电子气动机器人——“阿基里斯”六脚勘测员,也被称为FESTO的“六足动物”。Y.Ba

6、ndo教授采用了世界上著名的德国FESTO生产的气动元件、可编程控制器和传感器等,创造了一个在荷马史诗中最健壮最勇敢的希腊英雄——阿基里斯。它能在人不易进入的危险区域、污染或放射性的环境中进行地形侦察。六脚电子气动机器人的上方安装了一个照相机来探视障碍物,能安全的绕过它,并在行走过程中记录和收集数据。六脚电子气动机器人行走的所有程序由FPC101-B可编程控制器控制,FPC101-B能在六个不同方向控制机器人的运动,最大行走速度0.1m/s36。通常如果有三个脚与地面接触,机器人便能以一种平稳的姿态行走,六脚中的每一个脚都有三个自由度,一个直线气缸把脚提起、放下,一个摆动马达控制脚伸

7、展、退回,另一个摆动马达则负责围绕脚的轴心作旋转运动。每个气缸都装备了调节速度用的单向节流阀,使机械驱动部件在运动时保持平稳,即在无级调速状态下工作。控制气缸的阀内置在机器人体内,由FPC101-B可编程控制器控制。当接通电源时,气动阀被切换到工作状态位置,当关闭电源时,他们便回到初始位置。此外,操作者能在任何一点上停止机器人的运动,如果机器人的传感器在它的有效范围内检测到障碍物,机器人也会自动停止。由汉诺威大学材料科学研究院设计的气动攀墙机器人,它能在两

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。