相似三角形的判定+性质+经典例题分析

相似三角形的判定+性质+经典例题分析

ID:24982247

大小:529.62 KB

页数:10页

时间:2018-11-16

相似三角形的判定+性质+经典例题分析_第1页
相似三角形的判定+性质+经典例题分析_第2页
相似三角形的判定+性质+经典例题分析_第3页
相似三角形的判定+性质+经典例题分析_第4页
相似三角形的判定+性质+经典例题分析_第5页
资源描述:

《相似三角形的判定+性质+经典例题分析》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、相似形(一)板块一、课前回顾一、比例性质1.基本性质:(两外项的积等于两内项积)2.反比性质:(把比的前项、后项交换)3.合比性质:(分子加(减)分母,分母不变).4.等比性质:(分子分母分别相加,比值不变.)如果,那么.谈重点:(1)此性质的证明运用了“设法”,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.5.黄金分割:内容尺规作图作一条线段的黄金分割点经典例题回顾:例题1.已知a、b、c是非零实数,且,求k的值.例

2、题2.已知,求的值。板块二、新课讲解知识点一、相似形的概念概念:具有相同形状的图形叫相似图形.谈重点:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关.⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.知识点二、平行线分线段成比例定理①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段

3、成比例。③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;知识点三、相似三角形的判定  判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸:(1)有一组锐角对应相等的两个直角三角形相似。(2)顶角或底角对应相等的两个等腰三角形相似。例题精讲 【重难点高效突破】例题1.如图,直线DE分别与△ABC的边AB、A

4、C的反向延长线相交于D、E,由ED∥BC可以推出吗?请说明理由。(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D.求证:(1);(2);(3)例题3.如图,AD是RtΔABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、AC于E、F.则吗?说说你的理由.例题4.如图,在平行四边形ABCD中,已知过点B作BE⊥CD于E,连接AE,F为AE上一点,且∠BFE=∠C(1)求证:△ABF∽△EAD;(1)若AB=4,∠BAE=30°,求AE的长;(2)在(1)(2)条件下,若AD=3,求BF的长。【即

5、时训练】一、选择题1.如图,△ABC经平移得到△DEF,AC、DE交于点G,则图中共有相似三角形()A.3对B.4对C.5对D.6对2.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D..3.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()A.ΔADE∽ΔAEFB.ΔECF∽ΔAEFC.ΔADE∽ΔECFD.ΔAEF∽ΔABF4、如图,直线l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,则AE∶EC是()A.5∶2B.4∶1C.2∶1D.3∶2(1题图)(2题图)(3题图)(4题图)5

6、.如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A.1对B.2对C.3对D.4对(5题图)(6题图)(7题图)(8题图)6.ΔABC中,DE∥BC,且AD∶DB=2∶1,那么DE∶BC等于()A.2∶1B.1∶2C.2∶3D.3∶27.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条8.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.9.下列说法:其中正

7、确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.A.①②B.③④C.①④D.②③二、解答题1、如图,ΔABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.2.如图,在梯形ABCD中,AD⊥BC,∠BAD=90°,对角线BD⊥DC.(1)ΔABC与ΔDCB相似吗?请说明理由.(2)如果AD=4,BC=9,求BD的长.3.已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.ΔADQ与ΔQCP是否相似?为什么?4.

8、如图,已知AD为△ABC的角平分线,AD的垂直平分线交BC的延长线于点E,交AB与F,试判定△BAE与△ACE是否相似,并说明理由。5.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。