资源描述:
《数学:2.4.2《求函数零点近似解的一种计算方法—二分法》课件(新人教b必修1)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2.4.1求函数零点近似解的一种计算方法——二分法课件1、函数的零点的定义:使f(x)=0的实数x叫做函数y=f(x)的零点复习:2、零点存在性判定法则复习:问题1.能否求解以下几个方程(1)x2-2x-1=0(2)2x=4-x(3)x3+3x-1=0指出:用配方法可求得方程x2-2x-1=0的解,但此法不能运用于解另外两个方程.探索新授:由图可知:方程x2-2x-1=0的一个根x1在区间(2,3)内,另一个根x2在区间(-1,0)内.xy1203y=x2-2x-1-1画出y=x2-2x-1的
2、图象(如图)结论:借助函数f(x)=x2-2x-1的图象,我们发现f(2)=-1<0,f(3)=2>0,这表明此函数图象在区间(2,3)上穿过x轴一次,可得出方程在区间(2,3)上有惟一解.问题2.不解方程,如何求方程x2-2x-1=0的一个正的近似解(精确到0.1)?思考:如何进一步有效缩小根所在的区间?由于2.375与2.4375的近似值都为2.4,停止操作,所求近似解为2.4。数离形时少直观,形离数时难入微!2-3+xy1203y=x2-2x-1-12-3+2.5+2.25--2.375-
3、2-3+2.25-2.5+2.375-2.4375+2-2.5+3+232.52-3+2.5+2.25-22.52.25由于2.375与2.4375的近似值都为2.4,停止操作,所求近似解为2.4。1.简述上述求方程近似解的过程x1∈(2,3)∵f(2)<0,f(3)>0x1∈(2,2.5)∴f(2)<0,f(2.5)>0x1∈(2.25,2.5)∴f(2.25)<0,f(2.5)>0x1∈(2.375,2.5)∴f(2.375)<0,f(2.5)>0x1∈(2.375,2.4375)∴f(2.
4、375)<0,f(2.4375)>0∵f(2.5)=0.25>0∵f(2.25)=-0.4375<0∵f(2.375)=-0.2351<0∵f(2.4375)=0.105>0通过自己的语言表达,有助于对概念、方法的理解!∵2.375与2.4375的近似值都是2.4,∴x1≈2.4解:设f(x)=x2-2x-1,x1为其正的零点对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两端点逐步逼近零点,进而得到零点(或对
5、应方程的根)近似解的方法叫做二分法.问题4:二分法实质是什么?用二分法求方程的近似解,实质上就是通过“取中点”的方法,运用“逼近”思想逐步缩小零点所在的区间。问题3.如何描述二分法?例题:利用计算器,求方程2x=4-x的近似解(精确到0.1)怎样找到它的解所在的区间呢?在同一坐标系内画函数y=2x与y=4-x的图象(如图)能否不画图确定根所在的区间?方程有一个解x0∈(0,4)如果画得很准确,可得x0∈(1,2)数学运用(应用数学)解:设函数f(x)=2x+x-4则f(x)在R上是增函数∵f(0
6、)=-3<0,f(2)=2>0∴f(x)在(0,2)内有惟一零点,∴方程2x+x-4=0在(0,2)内有惟一解x0.由f(1)=-1<0,f(2)=2>0得:x0∈(1,2)由f(1.5)=0.33>0,f(1)=-1<0得:x0∈(1,1.5)由f(1.25)=-0.37<0,f(1.5)>0得:x0∈(1.25,1.5)由f(1.375)=-0.031<0,f(1.5)>0得:x0∈(1.375,1.5)由f(1.4375)=0.146>0,f(1.375)<0得:x0∈(1.375,1.4
7、375)∵1.375与1.4375的近似值都是1.4,∴x0≈1.4问题5:能否给出二分法求解方程f(x)=0(或g(x)=h(x))近似解的基本步骤?1.利用y=f(x)的图象,或函数赋值法(即验证f(a)•f(b)<0),判断近似解所在的区间(a,b).;2.“二分”解所在的区间,即取区间(a,b)的中点3.计算f(x1):(1)若f(x1)=0,则x0=x1;(2)若f(a)•f(x1)<0,则令b=x1(此时x0∈(a,x1));(3)若f(a)•f(x1)<0,则令a=x1(此时x0∈
8、(x1,b)).;4.判断是否达到给定的精确度,若达到,则得出近似解;若未达到,则重复步骤2~4.练习1:求方程x3+3x-1=0的一个近似解(精确到0.01)画y=x3+3x-1的图象比较困难,变形为x3=1-3x,画两个函数的图象如何?xy10y=1-3xy=x31有惟一解x0∈(0,1)练习2:下列函数的图象与x轴均有交点,其中不能用二分法求其零点的是()Cxy0xy0xy0xy0问题5:根据练习2,请思考利用二分法求函数零点的条件是什么?1.函数y=f(x)在[a,b]上连续不断.2.y