知识讲解正态分布(理)

知识讲解正态分布(理)

ID:24887900

大小:615.00 KB

页数:11页

时间:2018-11-16

知识讲解正态分布(理)_第1页
知识讲解正态分布(理)_第2页
知识讲解正态分布(理)_第3页
知识讲解正态分布(理)_第4页
知识讲解正态分布(理)_第5页
资源描述:

《知识讲解正态分布(理)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、正态分布【学习目标】1.了解正态分布曲线的特点及曲线所表示的意义。2.了解正态曲线与正态分布的性质。【要点梳理】要点诠释:要点一、概率密度曲线与概率密度函数1.概念:对于连续型随机变量,位于轴上方,落在任一区间(a,b]内的概率等于它与轴、直线与直线所围成的曲边梯形的面积(如图阴影部分),这条概率曲线叫做的概率密度曲线,以其作为图象的函数叫做的概率密度函数。2、性质:①概率密度函数所取的每个值均是非负的。②夹于概率密度的曲线与轴之间的“平面图形”的面积为1③的值等于由直线,与概率密度曲线、轴所围成的

2、“平面图形”的面积。要点二、正态分布1.正态变量的概率密度函数正态变量的概率密度函数表达式为:,()其中x是随机变量的取值;μ为正态变量的期望;是正态变量的标准差.2.正态分布(1)定义如果对于任何实数随机变量满足:,则称随机变量服从正态分布。记为。(2)正态分布的期望与方差若,则的期望与方差分别为:,。要点诠释:(1)正态分布由参数和确定。参数是均值,它是反映随机变量取值的平均水平的特征数,可用样本的均值去估计。是标准差,它是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计。(2)经验表

3、明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.要点三、正态曲线及其性质:1.正态曲线如果随机变量X的概率密度函数为,其中

4、实数和为参数(),则称函数的图象为正态分布密度曲线,简称正态曲线。2.正态曲线的性质:①曲线位于轴上方,与轴不相交;②曲线是单峰的,它关于直线对称;③曲线在时达到峰值;④当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.⑤曲线与轴之间的面积为1;⑥决定曲线的位置和对称性;当一定时,曲线的对称轴位置由确定;如下图所示,曲线随着的变化而沿轴平移。⑦确定曲线的形状;当一定时,曲线的形状由确定。越小,曲线越“高瘦”,表示总体的分布越集中;越大,曲线越“矮胖”,表

5、示总体的分布越分散。如下图所示。要点诠释:性质①说明了函数具有值域(函数值为正)及函数的渐近线(x轴).性质②并且说明了函数具有对称性;性质③说明了函数在x=时取最值;性质⑦说明越大,总体分布越分散,越小,总体分布越集中.要点四、求正态分布在给定区间上的概率1.随机变量取值的概率与面积的关系若随机变量ξ服从正态分布,那么对于任意实数a、b(a<b),当随机变量ξ在区间(a,b]上取值时,其取值的概率与正态曲线与直线x=a,x=b以及x轴所围成的图形的面积相等.如图(1)中的阴影部分的面积就是随机变量

6、孝在区间(a,b]上取值的概率.一般地,当随机变量在区间(-∞,a)上取值时,其取值的概率是正态曲线在x=a左侧以及x轴围成图形的面积,如图(2).随机变量在(a,+∞)上取值的概率是正态曲线在x=a右侧以及x轴围成图形的面积,如图(3).根据以上概率与面积的关系,在有关概率的计算中,可借助与面积的关系进行求解.2、正态分布在三个特殊区间的概率值:;;。上述结果可用下图表示:要点诠释:若随机变量服从正态分布,则落在内的概率约为0.997,落在之外的概率约为0.003,一般称后者为小概率事件,并认为在

7、一次试验中,小概率事件几乎不可能发生。一般的,服从于正态分布的随机变量通常只取之间的值,简称为原则。3、求正态分布在给定区间上的概率方法(1)数形结合,利用正态曲线的对称性及曲线与轴之间面积为1。①正态曲线关于直线对称,与对称的区间上的概率相等。例如;②;③若,则。(2)利用正态分布在三个特殊区间内取值的概率:①;②;③。【典型例题】类型一、正态分布的概率密度函数例1.下列函数是正态密度函数的是().A.,()都是实数B.C.D.【思路点拨】本题可对照正态密度函数的标准形式判断.【解析】正态密度函数

8、为:,其中指数部分的应与系数的分母处的保持一致,系数为正数且指数为负数.选项A有两处错误,分别是错为,指数错为正数.选项C,从系数可得=2,而从指数处可得,显然不符.选项D中指数为正,错误.所以正确答案为B.【总结升华】注意函数的形式特点是解题的关键.举一反三:【变式1】设一正态总体,它的概率密度曲线是函数的图象,则这个正态总体的均值与方差分别是()A.10与8B.10与4C.8与10D.2与10【答案】在该正态分布中,=10,=2,则E(X)=10,D(X)==4,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。