欢迎来到天天文库
浏览记录
ID:24780018
大小:53.50 KB
页数:5页
时间:2018-11-16
《图像识别在四探针测试技术中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、图像识别在四探针测试技术中的应用
2、第1内容显示中lunm范围以上)已经不能满足测试需要,斜置式方形四探针可以提供0.5mm左右的测试分辨率,但对于如此小的测试区域,以及成百上千的测试点,用人工判断测试结构的几何精确性,记录测试结果是不现实的,因此我们将图像识别引用到了四探针测试技术中来解决以上问题。 500)this.style.ouseg(this)">图1方形探针测试结构 500)this.style.ouseg(this)">图2游移后的探针测试图 500)this.style.ouseg(this)
3、">图3基片图像直方图 500)this.style.ouseg(this)">图4加载探针后的基片直方图 500)this.style.ouseg(this)">图5粗调后的探针图像 500)this.style.ouseg(this)">图6探针定位图 测试结构对测试结果的影响 Rymaszeouseg(this)">图7调整后的探针图像 图像识别在测试系统中的应用 为了让测试结果的误差可以控制,需要实时采集测试过程中的探针位置图像,通过对探针图像的识别、计算,并在必要的情况下通过步进电机
4、控制探针的移动,来保证四探针的方形测试结构的精确性。 通过直方图选择边界阈值 灰度直方图是数字图像处理中最简单、最有用的工具之一[2],是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其横坐标是灰度级,纵坐标是该灰度出现的频率(像素的个数)。如果一图像由两个不链接的区域组成,并且每个区域的直方图已知,则整幅图像的直方图是这两个区域直方图的和,也就是说直方图具有叠加性。由此出发我们分别采得的纯基片图像,以及加载探针(斜置探针的针尖)以后的图像的直方图,如图3、图4所示。 分析上述直方图,我们发现加载
5、探针后的直方图在低灰度级上新增加了一个波峰。因为我们采用的反射成像系统,探针对光的反射效果比基片差,因而所成的图像灰度级也就比基片的低,所以基片的图像产生了直方图上的右峰(图3证实了这一点),而探针的图像就产生了直方图上的左峰(见图4)。两个峰值之间灰度级的像素数目相对较少,从而产生了两峰之间的谷,选择谷做阈值将可以合理的将探针图像从基片图像中识别出来。如图4所示我们可以将像素阈值取为117,判断图像中点的灰度值,大于它的就是基片,小于它的就是探针,这样就可以识别出图像中的探针区域。 中心探测确定探针位置
6、首先我们要对探针进行粗调,使其轴线沿整个图形的中心线分布,如图5所示。由于探针的针尖成椭圆形,且处于斜置状态,所以定位探针针尖时,既不能认定其是探针沿轴线的第一个边界点,也不能依照各种质心算法,按质心的定位来确定针尖的位置。经多次实验验证,我们从整幅图像的中心位置出发,以一定的像素宽度(每个像素对应实物距离为0.955mm)分别沿上下、左右四个方向进行扫描,如果某扫描范围内的像素灰度值都小于我们选定的阈值,则认为该扫描范围的中心位置即为探针的针尖位置。如图6所示,设探针定位图像的长、宽度分别为m、n,我们从()
7、点出发,以粗实线的宽度(7个像素)向四个方向扫描,以图像中上方1号探针的识别为例,向上扫描,当y>y1时,如果该高度上虚线所示范围内的像素的灰度值,不能全部满足小于我们设定的灰度阈值的要求,则我们将它视为基片,而不是探针,直到我们扫描到y=y1这一行,发现该行对应的扫描宽度内的点都在我们设定的阈值范围内,于是就将(y1)这一点定位为1号探针现在的位置。其它探针的定位与此相似,不再赘述。 识别的结果如图6所示中的短粗线所示,探针的位置就定位为(y1)、(y2)、(x1,)、()。实验证明这种识别方式对探针
8、针尖的定位是比较合理和精确的。 驱动步进电机调整探针的测试结构 完成上面所说的图像识别定位之后,驱动步进电机使探针移动并让探针就图像中心对称分布,并保证对角线相等,即可保证正方形的测试结构。 图像的可视宽度为800mm,对应图像的宽度为764(以像素为单位),假设测试距离要求为m,则测试结构要求探针距图像中心点的距离为m/2,它对应的图像上的宽度k=,将这个值与探针现在的定位位置距图像中心的距离j(仍以图像中上方1号探针为例,j=n/2-y1)相比较即可确定探针的移动方向是前进还是后退,从而确定相应步进电
9、机是正转还是反转,
10、k-j
11、值的大小可用来确定电机转动的步数。我们所使用的步进电机,每步的最小移动量为2.5mm,对应的图像距离约为2.4(个像素),将
12、k-j
13、的值除以2.4即可得出探针的移动步数,虽然因为不能整除,可能要产生一些误差,但误差不会超过2mm,这对于几百微米的测试宽度来说,是可以忽略不计的,对测试结果几乎不会产生什么影响。图7是对图5所对应的测试图形进行调整后所得的结果
此文档下载收益归作者所有