资源描述:
《直线与平面垂直的性质 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.直线和平面垂直的定义如何?如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,则称这条直线和这个平面垂直.其中直线叫做平面的垂线,平面叫做直线的垂面.交点叫做垂足.αA一、知识回顾2.直线与平面垂直的判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。线线垂直线面垂直图形表示符号表示关键:线不在多,相交则行如图,长方体ABCD—A1B1C1D1中,棱AA1,BB1,CC1,DD1所在直线与底面ABCD的位置关系如何?它们彼此之间具有什么位置关系?AA1BCDB1C1D1二
2、、新知探究例:如图,已知于点A,于点B,求证:.ABCαβla三、理论迁移1.类比探究:①交换“平行”与“垂直”a⊥α,b⊥αa∥b性质定理:变式探究a⊥α,b⊥αa∥b1.类比探究:①交换“平行”与“垂直”a⊥α,b⊥αa∥ba⊥α,b⊥αa∥b性质定理:变式探究a⊥α,b⊥αa∥b1.类比探究:①交换“平行”与“垂直”a⊥α,b∥αa⊥ba⊥α,b⊥αa∥b性质定理:a⊥α,b⊥αa∥babαl变式探究②交换“直线”与“平面”1.类比探究:①交换“平行”与“垂直”a⊥α,b∥αa⊥b②交换“直线”与“平面
3、”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥b变式探究a⊥α,1.类比探究:①交换“平行”与“垂直”bb∥αa⊥a⊥α,b∥αa⊥b②交换“直线”与“平面”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥bββ变式探究a⊥α,1.类比探究:①交换“平行”与“垂直”∥αa⊥a⊥α,b∥αa⊥b②交换“直线”与“平面”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥bβββa变式探究αa⊥α,1.类比探究:①交换“平行”与“垂直”∥αa⊥a⊥α,b∥αa⊥b②交换“直线”与“平面”a⊥α,b⊥αa∥b性质定
4、理:a⊥α,b∥αa⊥bβββaαcb变式探究a⊥α,1.类比探究:①交换“平行”与“垂直”∥αa⊥a⊥α,b∥αa⊥b②交换“直线”与“平面”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥bββ2.逆向探究:交换“条件”与“结论”①变式探究βaαcba⊥α,1.类比探究:①交换“平行”与“垂直”∥αa⊥a⊥α,b∥αa⊥b②交换“直线”与“平面”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥bββ2.逆向探究:交换“条件”与“结论”①a⊥α,b∥αa⊥b变式探究a⊥α,1.类比探究:①交换“平行”与“垂
5、直”∥αa⊥a⊥α,b∥αa⊥b②交换“直线”与“平面”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥bββ2.逆向探究:交换“条件”与“结论”①a⊥α,b∥αa⊥babαabα变式探究1.类比探究:①交换“平行”与“垂直”a⊥α,b∥αa⊥b②交换“直线”与“平面”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥ba⊥α,∥αa⊥ββ2.逆向探究:交换“条件”与“结论”①a⊥α,b∥αa⊥b②a⊥α,∥αa⊥ββ变式探究abαabα1.类比探究:①交换“平行”与“垂直”a⊥α,b∥αa⊥b②交换“直线”与
6、“平面”a⊥α,b⊥αa∥b性质定理:a⊥α,b∥αa⊥ba⊥α,∥αa⊥ββ2.逆向探究:交换“条件”与“结论”①a⊥α,b∥αa⊥b②a⊥α,∥αa⊥ββa⊥α,∥αβa⊥β变式探究αβa2.数学思想转化空间问题平面问题1.知识方法小结①线面垂直的性质定理及其应用②反证法③类比探究,逆向探究垂直关系平行关系线面关系线线关系随堂测试1.判断下列命题是否正确:①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③平行于同一个平面的两条直线互相平行;④垂直于同一个平面的两条直线互相平行.
7、正确的是:①④2.若a,b表示直线,表示平面,下列命题正确的是。(3)(4)