第07章 离散因变量和受限因变量模型70480

第07章 离散因变量和受限因变量模型70480

ID:24720492

大小:470.50 KB

页数:69页

时间:2018-11-14

第07章  离散因变量和受限因变量模型70480_第1页
第07章  离散因变量和受限因变量模型70480_第2页
第07章  离散因变量和受限因变量模型70480_第3页
第07章  离散因变量和受限因变量模型70480_第4页
第07章  离散因变量和受限因变量模型70480_第5页
资源描述:

《第07章 离散因变量和受限因变量模型70480》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第七章离散因变量和受限因变量模型通常的经济计量模型都假定因变量是连续的,但是在现实的经济决策中经常面临许多选择问题。人们需要在可供选择的有限多个方案中作出选择,与通常被解释变量是连续变量的假设相反,此时因变量只取有限多个离散的值。例如,人们对交通工具的选择:地铁、公共汽车或出租车;投资决策中,是投资股票还是房地产。以这样的决策结果作为被解释变量建立的计量经济模型,称为离散被解释变量数据计量经济学模型(modelswithdiscretedependentvariables),或者称为离散选择模型(discretechoicemodel,DCM)。1在实际中,还会经常遇到因变量受到某种限制

2、的情况,这种情况下,取得的样本数据来自总体的一个子集,可能不能完全反映总体。这时需要建立的经济计量模型称为受限因变量模型(limiteddependentvariablemodel)。这两类模型经常用于调查数据的分析中。2§7.1二元选择模型在离散选择模型中,最简单的情形是在两个可供选择的方案中选择其一,此时被解释变量只取两个值,称为二元选择模型(binarychoicemodel)。在实际生活中,我们经常遇到二元选择问题。例如,在买车与不买车的选择中,买车记为1,不买记为0。是否买车与两类因素有关系:一类是车本身所具有的属性,如价格、型号等;另一类是决策者所具有的属性如收入水平、对车的

3、偏好程度等。如果我们要研究是否买车与收入之间的关系,即研究具有某一收入水平的个体买车的可能性。因此,二元选择模型的目的是研究具有给定特征的个体作某种而不作另一种选择的概率。3为了深刻地理解二元选择模型,首先从最简单的线性概率模型开始讨论。线性概率模型的回归形式为:(7.1.1)其中:N是样本容量;k是解释变量个数;xj为第j个个体特征的取值。例如,x1表示收入;x2表示汽车的价格;x3表示消费者的偏好等。设yi表示取值为0和1的离散型随机变量:式(7.1.1)中ui为相互独立且均值为0的随机扰动项。7.1.1线性概率模型及二元选择模型的形式4令pi=P(yi=1),那么1-pi=P(yi

4、=0),于是(7.1.2)又因为E(ui)=0,所以E(yi)=xi,xi=(x1i,x2i,…,xki),=(1,2,…,k),从而有下面的等式:(7.1.3)5式(7.1.3)只有当xi的取值在(0,1)之间时才成立,否则就会产生矛盾,而在实际应用时很可能超出这个范围。因此,线性概率模型常常写成下面的形式:(7.1.4)此时就可以把因变量看成是一个概率。那么扰动项的方差为:(7.1.5)或(7.1.6)6由此可以看出,误差项具有异方差性。异方差性使得参数估计不再是有效的,修正异方差的一个方法就是使用加权最小二乘估计。但是加权最小二乘法无法保证预测值ŷ在(0,1)之内,这

5、是线性概率模型一个严重的弱点。由于上述问题,我们考虑对线性概率模型进行一些变换,由此得到下面要讨论的模型。假设有一个未被观察到的潜在变量yi*,它与xi之间具有线性关系,即(7.1.7)其中:ui*是扰动项。yi和yi*的关系如下:(7.1.8)7yi*大于临界值0时,yi=1;小于等于0时,yi=0。这里把临界值选为0,但事实上只要xi包含有常数项,临界值的选择就是无关的,所以不妨设为0。这样(7.1.9)其中:F是ui*的分布函数,要求它是一个连续函数,并且是单调递增的。因此,原始的回归模型可以看成如下的一个回归模型:(7.1.10)即yi关于它的条件均值的一个回归。8分布函数的类型

6、决定了二元选择模型的类型,根据分布函数F的不同,二元选择模型可以有不同的类型,常用的二元选择模型如表7.1所示:表7.1常用的二元选择模型ui*对应的分布分布函数F相应的二元选择模型标准正态分布Probit模型逻辑分布Logit模型极值分布Extreme模型9二元选择模型一般采用极大似然估计。似然函数为(7.1.11)即(7.1.12)对数似然函数为(7.1.13)7.1.2二元选择模型的估计问题10对数似然函数的一阶条件为(7.1.14)其中:fi表示概率密度函数。那么如果已知分布函数和密度函数的表达式及样本值,求解该方程组,就可以得到参数的极大似然估计量。例如,将上述3种分布函数和密

7、度函数代入式(7.1.14)就可以得到3种模型的参数极大似然估计。但是式(7.1.14)通常是非线性的,需用迭代法进行求解。二元选择模型中估计的系数不能被解释成对因变量的边际影响,只能从符号上判断。如果为正,表明解释变量越大,因变量取1的概率越大;反之,如果系数为负,表明相应的概率将越小。11例7.1二元选择模型实例考虑Greene给出的斯佩克特和马泽欧(1980)的例子,在例子中分析了某种教学方法对成绩的有效性。因变量(GRADE

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。