欢迎来到天天文库
浏览记录
ID:24590294
大小:25.84 KB
页数:19页
时间:2018-11-11
《高中数学教学设计案例》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立高中数学教学设计案例 篇一:高中数学教学案例设计汇编 高中数学教学案例设计汇编 (下部) 19、正弦定理(2) 一、教学内容分析 本节内容安排在《普通高中课程标准实验教科书·数学必修5》(人教A版) 第一章,正弦定理第一课时,是在高二学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。 根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教
2、师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起自从人类进入商品经济社会以来,贸易即已成为人
3、们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 二、学情分析 对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内
4、容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 四、教学目标: 1.让学生从已有的几何知识出发,随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导
5、学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。 2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解 决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。 3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。 4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物
6、之间的普遍联系与辩证统一。 五、教学重点与难点 教学重点:正弦定理的发现与证明;正弦定理的简单应用。 教学难点:正弦定理的猜想提出过程。 教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。 六、教学过程: (一)结合实例,激发动机 师生活动:B教师:展示情景图如图1,船从港口B 航行到港口C,测得BC的距离为600m, 船在港口C卸货后继续向港口A航行,由随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。
7、国际分工的深化、大量国际统一标准规则的建立 于船员的疏忽没有测得CA距离,如果船 上有测角仪我们能否计算出A、B的距离? 学生:思考提出测量角A,A教师:若已知测得?BAC?75?,?ACB?45?,要计算A、B两地距离,你 (图1) 有办法解决吗? 学生:思考交流,画一个三角形A?B?C?,使得B?C?为6cm,?B?A?C??75?,?A?C?B??45?,量得A?B?距离约为,利用三角形相似
此文档下载收益归作者所有