欢迎来到天天文库
浏览记录
ID:24335665
大小:111.01 KB
页数:4页
时间:2018-11-13
《电源设计之缓冲正向转换器》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、电源设计之缓冲正向转换器作者:RobertKollman,德州仪器(TI) 来源:中电网 发布时间:2010-4-2910:34:25 [收藏][评论]电源设计之缓冲正向转换器计算出要添加多少电容和电阻是一项颇具挑战性的工作。下面介绍一条解决这一难题的捷径。图1显示了正向转换器的功率级。该转换器由变压器运行,该变压器将输入电压耦合至次级电路,再由次级电路完成对输入电压的整流和滤波。反射主电压和变压器漏电感形成低阻抗电路,当D2通过一个这样电阻而被迫整流关闭(commutateoff)时,通常需要一个缓冲器。D2可以是一个硅
2、p-n二极管,该二极管具有一个必须在其关闭前实现耗尽的逆向恢复充电功能。这就积累(loadsup)了漏电感中的过剩电流,从而导致高频率振铃和过高的二极管电压。肖特基二极管和同步整流器也存在类似情况,前者是因为其大结电容,后者是因为其关闭延迟时间问题。图1漏电感延缓了D2关闭图2显示了一些电路波形,顶部线迹为Q1漏电压,中部线迹为D1和D2结点处的电压,底部线迹为流经D1的电流。在顶部线迹中,您可以看到当Q1打开时,其漏电压被降至输入电压以下,这样就使得二极管D1电流增加。如果D2没有逆向恢复充电功能,当D1电流等于输出电流时,结
3、点电压就会上升。由于D2具有逆向恢复充电功能,因此D1电流会进一步增加,这便开始消耗电荷。一旦电荷耗尽,二极管便关闭,从而导致增加的结点电压进一步提高。请注意,电流会不断增加直到结点电压等于反射输入电压为止,因为在漏电感两端有一个正电压。随着电流的增加,该电流将对寄生电容进行充电并导致电路中振铃和损耗更大。图2当D2关闭时D2会引起过多的振铃这些振铃波形也许是人们所无法接受的,因为它们会引起EMI问题或带来二极管上让人无法接受的电压应力。跨接D2的RC缓冲器可以在几乎不影响效率的同时大大减少振铃。您可以利用下面的方程式计算得出振
4、铃频率(请参见方程式1):方程式1:但是您如何知道电路中L和C的值呢?窍门就是通过在D2两端添加一个已知电容值的电容以降低振铃频率,这样您就得到了两个方程式以及两个未知项。如果您添加了正好可以减半振铃频率的电容,那么就会使求出上述值变得更加轻松。要想降低一半频率,您需要一个4倍于您一开始使用的寄生电容的总电容。然后,只要将所添加的电容除以3就可以得到寄生电容。图3显示了频率为最初振铃频率一半时D2两端470pF电容的波形。因此,电路具有大约150pF的寄生电容。请注意,只添加电容对振铃的振幅作用很小,电路还需要一些电阻来阻尼振铃
5、。这就是电容因数3是开始的好地方的另一个原因。如果选择的电阻适当,那么该电阻就可以在对效率最小影响的同时提供卓越的阻尼效果。阻尼电阻的最佳值几乎就是寄生元件的典型电阻(请参见方程式2)。方程式2: 图3 将振铃频率提高两倍完成寄生计算使用具有35MHz振铃频率的方程式1以及一个150pF的寄生电容可以计算得出漏电感为150nH。把150nH代入方程式2得出一个大约为30Ohms的缓冲器电阻值。图4显示了添加缓冲器电阻的影响。振铃被完全消除且电压应力也从60V降到了40V。这样我们就能选择一个更低额定电压的二极管,从而实现效率的提
6、高。该过程的最后一步是计算缓冲器电阻损耗。使用方程式3可以完成该过程的最后一步,其中f为工作频率:方程式3:一旦完成计算,您就需要确定电路是否可以承受缓冲器中的损耗。如果不能的话,您就需要在振铃和缓冲器损耗间进行权衡。如欲了解如何选择最佳阻尼电阻的详情,请参见第3页的图3《电源设计小贴士4》。 图4选择适当的缓冲器电阻器能完全消除振铃总而言之,缓冲正向转换器是一个简单的过程:1)添加电容以减半振铃频率;2)计算寄生电容和电感;3)计算阻尼电阻以及电感4)确定电路损耗是否在可以接受的范围内。参考文献《开关模式电源转换的进步》,作者
7、:Middlebrook,R.D.和SlobodanCuk,第一卷和第二卷,第2版,TESLAco,1983年533页。摘自TESLAco,#10Mauchly,Irvine,CA92718,电话:(714)727-1960。(第一版c1981)
此文档下载收益归作者所有