考研数学知识点复习:导数应用该如何复习

考研数学知识点复习:导数应用该如何复习

ID:24285066

大小:15.94 KB

页数:3页

时间:2018-11-13

考研数学知识点复习:导数应用该如何复习_第1页
考研数学知识点复习:导数应用该如何复习_第2页
考研数学知识点复习:导数应用该如何复习_第3页
资源描述:

《考研数学知识点复习:导数应用该如何复习》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、“法律服务进基层”活动总结12月8日,随着第三期法律知识培训在少林服务区举办,少新管理处XX年“法律服务进基层”系列培训活动圆满结束考研数学知识点复习:导数应用该如何复习函数单调性的证明大都有两种方法,一是我们可以用定义来证,二就是根据一阶导的情况,来判断函数单调性的问题,而对于不等式的证明,我们是首选单调性来证明的,所以当不能用单调性来证明时,我们再考虑用其他方法来证明,有时可能用拉格朗日中值定理来证明,有的用最值来证明可能会更简单。  函数极值点和拐点的证明,我们可以对比较来学习,它们的证明出用定义外,都有两个充分条件来判定。所以,我们在判定极值点或

2、拐点时,当用它们的充分条件时一定要注意它们满足的条件再用,注意每个充分条件所满足的条件。第一充分条件和第二充分条件是我们判定极值点和拐点的重要工具。因此要求我们同学对这两个条件的内容要非常熟练。关于驻点和极值点的有关问题我们一定要先分清楚,驻点不一定是极值点,而极值点也不一定是驻点。我们只能说极值点的嫌疑点包括驻点和不可导点。而驻点和极值点之间是没有一定的包含关系的。特邀省委党校教授进行授课,以“用社会主义核心价值观凝心聚力”为主题,系统阐释了社会主义核心价值观的基本内涵、重要意义和实践路径“法律服务进基层”活动总结12月8日,随着第三期法律知识培训在少

3、林服务区举办,少新管理处XX年“法律服务进基层”系列培训活动圆满结束考研数学知识点复习:导数应用该如何复习函数单调性的证明大都有两种方法,一是我们可以用定义来证,二就是根据一阶导的情况,来判断函数单调性的问题,而对于不等式的证明,我们是首选单调性来证明的,所以当不能用单调性来证明时,我们再考虑用其他方法来证明,有时可能用拉格朗日中值定理来证明,有的用最值来证明可能会更简单。  函数极值点和拐点的证明,我们可以对比较来学习,它们的证明出用定义外,都有两个充分条件来判定。所以,我们在判定极值点或拐点时,当用它们的充分条件时一定要注意它们满足的条件再用,注意每

4、个充分条件所满足的条件。第一充分条件和第二充分条件是我们判定极值点和拐点的重要工具。因此要求我们同学对这两个条件的内容要非常熟练。关于驻点和极值点的有关问题我们一定要先分清楚,驻点不一定是极值点,而极值点也不一定是驻点。我们只能说极值点的嫌疑点包括驻点和不可导点。而驻点和极值点之间是没有一定的包含关系的。特邀省委党校教授进行授课,以“用社会主义核心价值观凝心聚力”为主题,系统阐释了社会主义核心价值观的基本内涵、重要意义和实践路径“法律服务进基层”活动总结12月8日,随着第三期法律知识培训在少林服务区举办,少新管理处XX年“法律服务进基层”系列培训活动圆满

5、结束  考研数学中,闭区间上的最值求法,我们一般是先找出函数在开区间内的驻点和不可导点,计算这两点的函数值,然后再求出函数区间端点处的函数值,最后比较驻点、不可导点和端点处的函数值的大小,最大的就为最大值,最小的即为函数的最小值。而开区间上的最值求法,是先求出两个端点处的极限值(),然后求出驻点和不可导点的函数值,最后比较它们的大小,若两个端点处极限值最大或最小值了,则说明此函数在开区间上没有最大或最小值。  方程根的问题在考研数学中也是经常出现的考题,判断方程根的情况是我们要求掌握的。对于要求判断方程根有且仅有几个根的问题,我们一般是先利用零点定理来证

6、明其存在性,然后再单调性来判别其唯一性。有时对于驻点不容易求出来的,我们则可能要用:“若至多有个根,则至多有个根”来判断。此类问题是先用零点定理或者推广的零点定理来判断其至少有几个根,然后再用上面这个“罗尔原话”来判断至多有几个根这样便可证明有且仅有几个根的问题了。  考研数学中关于导数应用这一块,有些很好结论也有助于我们判断极值点和拐点的,我们要熟记于心。利用导数研究曲线性态也是导数应用的重要内容。而关于渐近线的判断这一块主要考察在选择填空题中常用出现,学会以铅垂、水平、斜渐近线的顺序来判定渐近线类型是我们必须掌握的内容。特邀省委党校教授进行授课,以“

7、用社会主义核心价值观凝心聚力”为主题,系统阐释了社会主义核心价值观的基本内涵、重要意义和实践路径

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。