基于MATLAB的车牌识别程序论文课程设计报告

基于MATLAB的车牌识别程序论文课程设计报告

ID:24222401

大小:523.00 KB

页数:42页

时间:2018-11-13

基于MATLAB的车牌识别程序论文课程设计报告_第1页
基于MATLAB的车牌识别程序论文课程设计报告_第2页
基于MATLAB的车牌识别程序论文课程设计报告_第3页
基于MATLAB的车牌识别程序论文课程设计报告_第4页
基于MATLAB的车牌识别程序论文课程设计报告_第5页
资源描述:

《基于MATLAB的车牌识别程序论文课程设计报告》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、课程设计报告课程基于MATLAB的车牌识别II目录目录目录1摘要:1关键词:MATLAB、图像预处理、车牌定位、字符分割11.算法描述-1-1.1图像灰度处理-1-1.2边缘检测-2-1.3灰度图像腐蚀-3-1.4图像滤波-4-1.5图像的二值化-4-2.程序实现-5-2.1图像预处理-5-2.2图像增强与边缘检测-5-2.3车牌区域的确定与提取-6-2.4图像的二值化-7-2.5图像去噪-8-2.6图像增强-8-2.7图像切割-9-2.8图像字符识别-12-3.实验结果-15-参考文献-20-1基于MATL

2、AB的车牌识别摘要:汽车车牌的识别系统是现代智能交通管理的重要组成部分之一。车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别等五大核心部分。本文主要介绍图像预处理、车牌定位、字符分割三个模块的实现方法。本文的图像预处理模块是将图像灰度化和用Roberts算子进行边缘检测的步骤。车牌定位和分割采用的是利用数学形态法来确定车牌位置,再利用车牌彩色信息的彩色分割法来完成车牌部位分割。字符的分割采用的方法是以二值化后

3、的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分割。本文即是针对其核心部分进行阐述并使用MATLAB软件环境中进行字符分割的仿真实验。关键词:MATLAB、图像预处理、车牌定位、字符分割1基于MATLAB的车牌识别1.算法描述1.1图像灰度处理汽车图像样本目前大都是通过摄像机、数码相机等设备拍摄获取的,因而预处理前的图像都是彩色图像。真彩色图像又称RGB图像,它是利用R、G、B分量表示一个像素的颜色,R、G、B分别代表红、绿、蓝3种不同的颜色,通过三基色可以合成出任意颜色。而每个分量有255

4、种值可取,这样一个像素点可以有,1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,每一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。所以,对一个尺寸为m*n的彩色图像来说,存储为一个m*n*3的多维数组。彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度

5、。由于图像的每个象素都具有三个不同的颜色分量,存在许多与识别无关的信息,不便于进一步的识别工作,因此在对图像进行识别等处理中,经常将彩色图像转变为灰度图像,以加快处理速度。数字图像分为彩色图像和灰度图像。在RGB模型中,如果R=G=B,则颜色表示一种灰度颜色,其中R=G=B的值叫做灰度值。由彩色转换为灰度的过程叫做灰度化处理。灰度图像就是只有强度信息而没有颜色信息的图像,存储灰度图像只需要一个数据矩阵,矩阵每个元素表示对应位置像素的灰度值。彩色图像的象素色为RGB(R,G,B),灰度图像的象素色为RGB(r,

6、r,r),R,G,B可由彩色图像的颜色分解获得.而R,G,B的取值范围是0-255,所以灰度的级别只有256级。对于将彩色图像转换成灰度图像时,目前比较主流的灰度化方法叫平均值法,公式为:H=0.229R+0.588G+0.144B公式中H表示灰度图的亮度值;R代表彩色图像红色分量值;G代表色彩图像绿色分量值;B代表彩色图像蓝色分量值。RGB三分量前的系数为经验加权值。加权系数的取值建立在人眼的视觉模型之上。-13-基于MATLAB的车牌识别对于人眼较为敏感的绿色取较大的权值;对人眼较为不敏感的蓝色则取较小的

7、权值。通过该公式转换的灰度图能够比较好地反应原图像的亮度信息。在MATLAB中我们可以调用im2gray函数对图像进行灰度化处理。1.2边缘检测边缘是指图像灰度发生空间突变或者在梯度方向上发生突变的像素的集合。用摄像机采集到的机动车图像由于受到噪声干扰以及车辆本身的影响,使得获得的图像质量不理想。因此,在进行对汽车牌照的定位及字符识别之前需要先对车辆图像进行边缘检测处理,提高图像的质量,使其易于后面的分割和识别。通过良好的边缘检测可以大幅度的降低噪声、分离出复杂环境中的车辆图像、保留完好的车牌字符信息,方便后

8、面的车牌精确定位与字符识别。由于车牌识别系统摄像头安装位置固定以及机动车车牌的固有属性,我们可以发现机动车车牌图像都处在水平的矩形区域,在图像中位置较为固定,车牌中字符都是按水平方向排列。因为有这些明显的特征,经过适当的图像变换,可以清晰的呈现出车牌的边缘。本文采用经典的Roberts边缘检测算子来对图像进行边缘检测。基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示,例如梯度模,然后,用计

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。