一阶常微分方程解法总结

一阶常微分方程解法总结

ID:24042376

大小:445.70 KB

页数:8页

时间:2018-11-12

一阶常微分方程解法总结_第1页
一阶常微分方程解法总结_第2页
一阶常微分方程解法总结_第3页
一阶常微分方程解法总结_第4页
一阶常微分方程解法总结_第5页
资源描述:

《一阶常微分方程解法总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、-第一章一阶微分方程的解法的小结⑴、可分离变量的方程:①、形如当时,得到,两边积分即可得到结果;当时,则也是方程的解。例1.1、解:当时,有,两边积分得到所以显然是原方程的解;综上所述,原方程的解为②、形如当时,可有,两边积分可得结果;当时,为原方程的解,当时,为原方程的解。例1.2、解:当时,有两边积分得到,所以有;当时,也是原方程的解;综上所述,原方程的解为。⑵可化为变量可分离方程的方程:①、形如解法:令,则,代入得到为变量可分离方程,得到----再把u代入得到。②、形如解法:令,则,代入得到为变量可分离方程,得到再把u代入得到。③、形如解法:、,转化为,下同①;、,

2、的解为,令得到,,下同②;还有几类:以上都可以化为变量可分离方程。例2.1、解:令,则,代入得到,有所以,把u代入得到。例2.2、解:由得到,令,有,代入得到----,令,有,代入得到,化简得到,,有,所以有,故代入得到(3)、一阶线性微分方程:一般形式:标准形式:解法:1、直接带公式:2、积分因子法:,3、IVP:,例3、解:化简方程为:,则代入公式得到所以,(4)、恰当方程:形如解法:先判断是否是恰当方程:如果有恒成立,那么原方程是个恰当方程,找出一个----,有;例4、解:由题意得到,由得到,原方程是一个恰当方程;下面求一个由得,两边对y求偏导得到,得到,有,故,由

3、,得到(5)、积分因子法:方程,那么称是原方程的积分因子;积分因子不唯一。①当且仅当,原方程有只与x有关的积分因子,且为,两边同乘以,化为恰当方程,下同(4)。②当且仅当,原方程有只与y有关的积分因子,且为,两边同乘以,化为恰当方程,下同(4)。例5.1、----解:由得,且有,有,原方程两边同乘,得到化为,得到解为例5.2、解:由题意得到,,有有,有,原方程两边同乘,得到,得到原方程的解为:(6)、贝努力方程:形如,解法:令,有,代入得到,下同(3)例6、解:令,有,代入得到,则,有,,把u代入得到.(7)、一阶隐式微分方程:一般形式:,解不出的称为一阶隐式微分方程。-

4、---下面介绍四种类型:①、形如,一般解法:令,代入得到,两边对x求导得到,这是关于x,p的一阶线性微分方程,仿照(3),1、得出解为,那么原方程的通解为2、得出解为,那么原方程的通解为3、得出解为,那么原方程的通解为②、形如一般解法:令,代入有,两边对y求导,得到,此方程是一阶微分方程,可以按照以上(1)—(5)求出通解,那么原方程的通解为③、形如一般解法:设,,两边积分得到,于是有原方程的通解为----④、形如一般解法:设,由关系式得,有,两边积分得到,于是有例7.1解:令,得到,两边对y求导,得到,有,得到,于是通解为例7.2解:令,得到,两边对x求导,得到,有,两

5、边积分得到,于是通解为例7.3解:设有,所以于是通解为----例7.4解:设有,所以于是通解为(8)、里卡蒂方程:一般形式:一般解法:先找出一个特解,那么令,有,代入原方程得到,化简得到,为一阶线性微分方程,解出那么原方程的通解为例8解:我们可以找到一个特解,验证:,代入满足原方程。令,,代入有,化简得到,,所以有所以原方程的解为或---

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。