欢迎来到天天文库
浏览记录
ID:24018345
大小:54.50 KB
页数:4页
时间:2018-11-12
《三角形面积计算公式的推导》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、三角形面积计算公式的推导三角形面积计算公式的推导三角形面积计算公式的推导教学内容:人教版9册三角形面积公式推导部分教学目的:1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。教学过程:一、阅读质疑。先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。1厘米学生阅读后首先回顾了平行四边形、长方形地面积
2、公式及推导过程。然后学生提出了质疑,主要问题有:(1)数方格怎么求三角形的面积?(2)不数方格怎么求三角形的面积?有没有一个通用公式?(3)能把三角形也转化成我们学过的图形求面积吗?(4)转化成的这些图形跟三角形有什么关系吗?(析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。)二、点拨激思1.数方格的问题学生根据学习材料可以解答用数方格的方法求三角形的面积。老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。学生小声笑了起来。为什么笑?老师问到。
3、学生说数方格太麻烦了,池塘也不好划分方格。嗯,看来数方格求面积是有一定局限性的,今天我们就来研究三角形的面积。(析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。)2.转化的问题你想把三角形转化成什么图形?学生会转化成平行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成
4、这些图形来解决下面的几个问题。(析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。)三、探索解疑学生操作,讨论,汇报。1.转化的图形学生的答案有很多种,把两个完全一样的三角形转化成了平行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。2.解决转化前后图形间的关系(1)大小的关系通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S=S÷2。一个三角形转化成的图形跟三角形
5、关系是S=S(2)底和高的关系拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗?生1:两个完全一样的锐角三角形转化成了平行四边形,三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。因为平行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2师:思路真清晰,为什么÷2,谁还想说。(学生依次讲拼成的长方形,正方形这两种情况)(3)公式推导师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么?生:底×高÷2师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形
6、的高,那三角形的面积公式该怎么表示呢?生:S=a×h÷2(4)推导拓展师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗?学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。生3:我是把一个三角形沿着两边的重点对折,然后又
7、把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2师:这个方法怎样,谁来评价一下。学生评价,太棒了。生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2(析:12下一页....,。把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生
8、的思维空间得到了拓展,思维个性得到了发挥。)<三>归纳小结出示学习材
此文档下载收益归作者所有