欢迎来到天天文库
浏览记录
ID:23915538
大小:440.50 KB
页数:17页
时间:2018-11-11
《上海交大附中2014-2015学年高二上学期期中数学试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com上海交大附中2014-2015学年高二上学期期中数学试卷一、填空题(3分×14=42分)1.(3分)行列式的值是.2.(3分)向量,若⊥,则实数k=.3.(3分)与向量平行的单位向量是.4.(3分)三阶行列式第2行第1列元素的代数余子式为﹣10,则k=.5.(3分)不等式<0的解集为.6.(3分)若关于x,y,z的线性方程组增广矩阵变换为,方程组的解为,则m•n=.7.(3分)设数列{an}的首项a1=1且前n项和为Sn.已知向量,满足,则=.8.(3分)对任意的实数x,y,矩阵运算都成立,则=.9.(3分)设,为单位
2、向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为.10.(3分)设平面向量=(﹣2,1),=(λ,﹣1),若与的夹角是钝角,则λ的范围是.11.(3分)已知向量=(cosθ,sinθ),向量=(,﹣1),则
3、2﹣
4、的最大值是.12.(3分)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.13.(3分)已知△ABC的面积为1,在△ABC所在的平面内有两点P、Q,满足,则四边形BCPQ的面积为.14.(3分)设n阶方阵An=任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n﹣1阶方阵An﹣1,任
5、取An﹣1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则Sn=x1+x2+…+xn,则=.二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得4分,否则一律得零分.15.(4分)等边△ABC中,向量的夹角为()A.B.C.D.16.(4分)有矩阵A3×2,B2×3,C3×3,下列运算可行的是()A.ACB.BACC.ABCD.AB﹣AC17.(4分)O为平面上的定点,A、B、C是平面上不共线的三点,若,则△ABC
6、是()A.以AB为底边的等腰三角形B.以BC为底边的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三角形18.(4分)记,若ai,j=icosx+jsinx,其中i,j∈{1,2,3},则f(x)=a13A11+a23A21+a33A31的最小值是()A.﹣3B.1C.﹣1D.0三、解答题(本大题满分42分)本大题共有4题,解答下列各题必须写出必要的步骤.19.(8分)如图所示,,与的夹角为120°,与的夹角为30°,,且.(1)求B点,C点坐标;(2)求实数m、n的值.20.(10分)用行列式解关于x、y的方程组:(a∈R),并对解的情
7、况进行讨论.21.(10分)已知向量=(2,2),向量与向量的夹角为,且=﹣2,(1)求向量;(2)若=(1,0)且,=(cosA,2cos),其中A、C是△ABC的内角,若三角形的三内角A、B、C依次成等差数列,试求
8、
9、的取值范围.22.(14分)平面直角坐标系中,O为原点,射线OA与x轴正半轴重合,射线OB是第一象限角平分线.在OA上有点列A1,A2,A3,…,An,…,在OB上有点列B1,B2,B3,…,Bn,…已知,A1(5,0),.(1)求点A2,B1的坐标;(2)求的坐标;(3)求△AnOBn面积的最大值,并说明理由.上海交大附中2014-
10、2015学年高二上学期期中数学试卷参考答案与试题解析一、填空题(3分×14=42分)1.(3分)行列式的值是﹣1.考点:二阶矩阵;同角三角函数基本关系的运用.专题:矩阵和变换.分析:本题可以利用二阶行列式的计算公式直接计算,求出行列式的值,得到本题结论.解答:解:∵行列式=ad﹣bc,∴行列式=sinx•(﹣sinx)﹣cosx•cosx=﹣(sin2x+cos2x)=﹣1.故答案为:﹣1.点评:本题考查了二阶行列式的计算,本题难度不大,属于基础题.2.(3分)向量,若⊥,则实数k=.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根
11、据非零向量垂直的充要条件及向量数量积的坐标运算即可求出k.解答:解:;∴;∴.故答案为:.点评:考查两非零向量垂直的充要条件:=0,以及数量积的坐标运算.3.(3分)与向量平行的单位向量是±(,﹣).考点:单位向量.专题:计算题.分析:根据题意,设要求的向量为,由向量的共线的性质,可得=λ=(3λ,﹣4λ),又由为单位向量,可得(3λ)2+(﹣4λ)2=1,解可得λ的值,进而将λ的值代入(3λ,﹣4λ)中,即可得答案.解答:解:设要求的向量为,则=λ=(3λ,﹣4λ),又由为单位向量,则(3λ)2+(﹣4λ)2=1,解可得,λ=±,则=±(,﹣),故答
12、案为±(,﹣).点评:本题考查向量的运算,涉及单位向量的定义与向量平行的性质,注意向量的表示形
此文档下载收益归作者所有