轨迹方程求法汇总

轨迹方程求法汇总

ID:23867916

大小:805.00 KB

页数:14页

时间:2018-11-11

轨迹方程求法汇总_第1页
轨迹方程求法汇总_第2页
轨迹方程求法汇总_第3页
轨迹方程求法汇总_第4页
轨迹方程求法汇总_第5页
资源描述:

《轨迹方程求法汇总》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、WORD格式可编辑求轨迹方程的常用方法重点:掌握常用求轨迹方法难点:轨迹的定型及其纯粹性和完备性的讨论·【自主学习】知识梳理:(一)求轨迹方程的一般方法:1.待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。2.直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,

2、y)表示该等量关系式,即可得到轨迹方程。3.参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。4.代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。5.几何法

3、:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。(二)求轨迹方程的注意事项:1.求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。来表示,若要判断轨迹

4、方程表示何种曲线,则往往需将参数方程化为普通方程。3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。4.求轨迹方程还有整体法等其他方法。在此不一一缀述。课前热身:1.P是椭圆专业技术资料整理WORD格式可编辑=1上的动点,过P作椭圆长轴的垂线,垂足为M,则PM中点的轨迹中点的轨迹方程为:()A、B、C、D、=1【答案

5、】:B【解答】:令中点坐标为,则点P的坐标为(代入椭圆方程得,选B2.圆心在抛物线上,并且与抛物线的准线及轴都相切的圆的方程是()ABCD【答案】:D【解答】:令圆心坐标为(,则由题意可得,解得,则圆的方程为,选D3:一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支【答案】:D【解答】令动圆半径为R,则有,则

6、MO

7、-

8、MC

9、=2,满足双曲线定义。故选D。4:点P(x0,y0)在圆x2+y2=1上运动,则点M(2x0,y0)的轨迹是()A.焦点在x轴上的椭圆B

10、.焦点在y轴上的椭圆C.焦点在y轴上的双曲线D.焦点在X轴上的双曲线【答案】:A【解答】:令M的坐标为则代入圆的方程中得,选A【互动平台】专业技术资料整理WORD格式可编辑名师点题一:用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。例1:已知的顶点A,B的坐标分

11、别为(-4,0),(4,0),C为动点,且满足求点C的轨迹。【解析】由可知,即,满足椭圆的定义。令椭圆方程为,则,则轨迹方程为(,图形为椭圆(不含左,右顶点)。【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。(1)圆:到定点的距离等于定长(2)椭圆:到两定点的距离之和为常数(大于两定点的距离)(3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4)到定点与定直线距离相等。【变式1】:1:已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。解:设动圆的半径为R

12、,由两圆外切的条件可得:,。。∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。故所求轨迹方程为2:一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支【解答】令动圆半径为R,则有,则

13、MO

14、-

15、MC

16、=2,满足双曲线定义。故选D。二:用直译法求曲线轨迹方程专业技术资料整理WORD格式可编辑此类问题重在寻找

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。