备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案

备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案

ID:23850946

大小:929.13 KB

页数:6页

时间:2018-11-11

备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案_第1页
备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案_第2页
备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案_第3页
备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案_第4页
备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案_第5页
资源描述:

《备战2019高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8 Word版含答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、专题能力训练8 利用导数解不等式及参数的取值范围一、能力突破训练1.设f(x)=xlnx-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.2.(2018全国Ⅲ,理21)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-10时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.3.已知函数f(x)=ax+xlnx的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值

2、;(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;(3)当n>m>1(m,n∈N*)时,证明:.4.设函数f(x)=ax2-a-lnx,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).5.设函数f(x)=alnx,g(x)=x2.(1)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x

3、2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.6.已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.[来源:学科网]二、思维提升训练[来源:学科网ZXXK]7.已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.专题能力训练8 利用

4、导数解不等式及参数的取值范围一、能力突破训练1.解(1)由f'(x)=lnx-2ax+2a,[来源:学科网ZXXK]可得g(x)=lnx-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f

5、(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当01,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递

6、增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>2.解(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f'(x)=ln(1+x)-,设函数g(x)=f'(x)=ln(1+x)-,则g'(x)=,当-10时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)内单调递增.又f(0)=0,故当-1

7、)<0;当x>0时,f(x)>0.(2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)·ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.②若a<0,设函数h(x)==ln(1+x)-由于当

8、x

9、0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h'(x)=若6a+1>0,则当0

10、x

11、0,故x=0不是h(x)的极大值点.若6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,

12、故当x∈(x1,0),且

13、x

14、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。