欢迎来到天天文库
浏览记录
ID:23793513
大小:1.49 MB
页数:20页
时间:2018-11-10
《考研数学三公式大全》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、WORD格式可编辑高等数学公式导数公式:基本积分表:专业技术资料整理分享WORD格式可编辑三角函数的有理式积分:A.积化和差公式:B.和差化积公式:①②③④1.正弦定理:===2R(R为三角形外接圆半径)2..余弦定理:a=b+c-2bcb=a+c-2acc=a+b-2ab3.S⊿=a=ab=bc=ac==2R====pr=专业技术资料整理分享WORD格式可编辑sincostancot--+---+---+--++2--+--2k+++++(其中,r为三角形内切圆半径)4.诱导公试三角函数值等于的
2、同名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限sincostancot+++++-----++-+--5.和差角公式①②③④6.二倍角公式:(含万能公式)①②③④⑤专业技术资料整理分享WORD格式可编辑7.半角公式:(符号的选择由所在的象限确定)①②③④⑤⑥⑦⑧高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:多元函数微分法及应用专业技术资料整理分享WORD格式可编辑多元函数的极值及其求法:常数项级数:级数审敛法:专业技术资料整理分享WO
3、RD格式可编辑绝对收敛与条件收敛:函数展开成幂级数:幂级数:专业技术资料整理分享WORD格式可编辑一些函数展开成幂级数:欧拉公式:微分方程的相关概念一阶线性微分方程:专业技术资料整理分享WORD格式可编辑全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程线性代数公式大全——最新修订专业技术资料整理分享WORD格式可编辑1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的
4、大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉
5、斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)专业技术资料整理分享WORD格式可编辑的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;1.对于
6、阶矩阵:无条件恒成立;2.3.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;专业技术资料整理分享WORD格式可编辑对于同型矩阵、,若;1.行最简形矩阵:①、只能通过初等
7、行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;2.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;3.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号
8、,且,例如:;⑤、倍加某行或某列,符号,且,如:;4.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;5.三种特殊矩阵的方幂:专业技术资料整理分享WORD格式可编辑①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注
此文档下载收益归作者所有