线段及差最值问题

线段及差最值问题

ID:23765379

大小:290.50 KB

页数:10页

时间:2018-11-10

线段及差最值问题_第1页
线段及差最值问题_第2页
线段及差最值问题_第3页
线段及差最值问题_第4页
线段及差最值问题_第5页
资源描述:

《线段及差最值问题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、WORD格式可编辑专题一.线段和(差)的最值问题【知识依据】1.线段公理——两点之间,线段最短;2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线;3.三角形两边之和大于第三边;4.三角形两边之差小于第三边;5、垂直线段最短。一、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。(1)两个点都在直

2、线外侧:专业技术资料分享WORD格式可编辑(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A、B位于直线m,n的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.变式二:已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.专业技术资料分享WORD格式可编辑二、一个动点,一个定点:(一)动点在直线上运动:点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线

3、两侧:2、两点在直线同侧:(二)动点在圆上运动:点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、点与圆在直线两侧:2、点与圆在直线同侧:专业技术资料分享WORD格式可编辑三、已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)(1)点A、B在直线m两侧:过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左移动PQ长,即为P点,此时P、Q即为所

4、求的点。(2)点A、B在直线m同侧:四、求两线段差的最大值问题(运用三角形两边之差小于第三边)1、在一条直线m上,求一点P,使PA与PB的差最大;(1)点A、B在直线m同侧:(2)点A、B在直线m异侧:过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’专业技术资料分享WORD格式可编辑Ⅰ.专题精讲最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都

5、应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.Ⅱ.典型例题剖析一.归入“两点之间的连线中,线段最短”Ⅰ.“饮马”几何模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.模型应用:1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是.2.如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小

6、值是.3.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.第1题第2题第3题第4题4.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.5.如图,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为             .

7、第5题第6题第7题6.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为             .7.已知A(-2,3),B(3,1),P点在x轴上,若PA+PB长度最小,则最小值为            .若PA—PB长度最大,则最大值为            .专业技术资料分享WORD格式可编辑8.已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求抛物线的解析式;

8、(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.Ⅱ.台球两次碰壁模型已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点,使PA+PQ+QA周长最短.变式:已知点A、B位于直线m,n的内侧,在直线m、n分别上求点D、E点,使得围成的四边形ADEB周长最短.模型应用:1.如图,∠AOB=45°,P是∠AOB内一点,PO=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。