基于dds技术的智能超声波功率源的研制

基于dds技术的智能超声波功率源的研制

ID:23730308

大小:54.00 KB

页数:6页

时间:2018-11-10

基于dds技术的智能超声波功率源的研制_第1页
基于dds技术的智能超声波功率源的研制_第2页
基于dds技术的智能超声波功率源的研制_第3页
基于dds技术的智能超声波功率源的研制_第4页
基于dds技术的智能超声波功率源的研制_第5页
资源描述:

《基于dds技术的智能超声波功率源的研制》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基于DDS技术的智能超声波功率源的研制

2、第1摘要:介绍了一种基于直接数字合成(DirectDigitalSynthesis,DDS)技术的超声波功率源的设计。详细介绍了DDS信号产生电路、单片机控制电路、功率放大电路以及超声波功率源与换能器的匹配设计,并给出了系统软件设计方案。关键词:直接数字合成功率超声功率放大阻抗匹配功率超声设备利用超声波的能量改变材料的某些状态,需要产生相当大或比较大的功率。超声波功率源(或称发生器)向超声换能器提供连续的电能量,其性能特点直接影响着各种功率超声的研究工作。近年来,我国关于功率超声的研究十分热门,尤其是超声化学和超

3、声的生物效应,更是声学研究的热点。上述研究需要超声波具有高分辨率、高稳定性、大功率、频率大范围可调等特点,为此,研制了一种基于DDS技术的超声波功率源,并已将其应用在实际的声学研究中。1系统原理及特点系统原理如图1所示。用单片机AT89C51控制DDS芯片AD9850产生频率为1kHz~1MHz的波形信号;功率放大采用半桥放大方式,其中,功率开关使用MOSFET模块;通过输出变压器和电感组成的匹配网络驱动压电换能器激发超声波。本系统的主要特点有:(1)采用数字DDS技术产生波形信号,分辨率高、稳定性好、频率范围大,系统频率不会随工作时间出现漂移。(2)

4、功率放大器件采用大功率的MOSFET模块,功率可达2000Hz,频率控制字的位数为32位[1]。由式(2)可以计算出在125MHz时钟输入时分辨率为0.0219Hz。图42.1.2DDS信号发生电路波形信号发生电路原理框图如图3所示。整个电路以单片机AT89C51为控制核心,用并行输入的方式实现AD9850控制字的写入,同时实时处理键盘输入的各种命令,并控制显示输出。图5AD9850的输入时钟采用80MHz的晶振,根据式(2)可知系统的分辨率为0.0186Hz,频率范围可以从几Hz到几十MHz,但是整个系统的输出频率范围由后级功率放大电路中的一些时间常

5、数决定。将单片机的I/O口P1连接到AD9850的并行输入口,P3.4和P3.5联合控制单片机对AD9850的输入输出。AD9850控制字写完之后,便输出相应频率的方波信号QOUT。图4为单片机与AD9850的电路连接图。2.2半桥功放电路及其驱动AD9850产生的信号电流小,驱动能力弱,需经MOSFET栅极驱动芯片IR21844驱动后才能控制MOSFET模块。由于系统输出功率大,为提高驱动能力,并联使用四片IR21844。图5(a)为电路原理图。AD9850产生的信号QOUT经过一个三级管放大后输入IR21844,IR21844输出HO和LO两路反向

6、信号,如图5(b)所示。Td为死区时间,防止半桥电路出现直通,通过电阻R7可以调节Td的大小,即调节开关管的开通关断时间,从而调节系统的输出功率。图6所示为系统的半桥功率放大电路,R1、R2为桥平衡电阻;C1、C2为桥臂电容;R3、R4、C3、C4、D1、D2为桥开关吸收电路元件。其工作原理如下:两个反相的方波激励信号分别接到两个开关管的基极,当HO为高电平,LO为低电平时,即t1时刻,J1导通,J2关闭,电流通过J1至变压器初级向电容C2充电,同时C1上的电荷向J1和变压器初级放电,从而在输出变压器次级感应一个正半周期脉冲电压;当到达t2时刻时,J2

7、被触发导通,J1关闭,电流通过电容C1和变压器初级充电,而C2的电荷也经由变压器初级放电,在变压器次级感应一个负半周期脉冲电压,从而形成一个工作频率周期的功率放大波形。由于功放管工作在伏安特性曲线的饱和区或截止区,集电极功耗降到最低限度,从而提高了放大器的能量转换效率,使之可达90%以上[2]。功率开关器件选用日立公司的N通道功率MOSFET模块PM50502C,其具有高功率、高转换速度、低导通阻抗、低驱动电流等特点,耐压值为500V,最大工作电流为100A(每一模块封装了两个独立的小模块,每一小模块的最大工作电流为50A[3]。开关频率可达到500k

8、Hz。吸收电路采用RCD吸收电路,具有吸收效果好、电路相对简单等特点。2.3匹配网络设计在功率超声设备中,发生器与换能器的匹配设计非常重要,在很大程度上决定了超声设备能否正常、高效地工作。超声波发生器与换能器的匹配包括两个方面:阻抗匹配和调谐匹配。匹配电路如图6虚线框中所示,半桥逆变输出经变压器耦合后通过电感连接到换能器上,匹配设计即为输出变压器和匹配电感的设计。2.3.1阻抗匹配阻抗匹配使换能器的阻抗变换为最佳负载,即起阻抗变换作用。在电源电压给定的条件下,电源输出的功率大小主要取决于等效负载阻抗。本文的半桥功率放大器与串联电压开关型D类功率放大器原

9、理相同,晶体管都工作在开关状态,一般变压器初级等效负载RL′,上的输出功率表达式为:式中,Vc

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。