欢迎来到天天文库
浏览记录
ID:23657613
大小:108.50 KB
页数:7页
时间:2018-11-09
《离散数学中二元关系的性质判定》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、离散数学中二元关系的性质判定 【摘要】关系的性质是关系中的基本内容,对理解关系有着重要的意义。文中对二元关系性质的四种判定方法进行了分析和探讨,即,根据定义判定、根据定理判定、根据关系图判定、根据关系矩阵判定。以加深学生理解,方便灵活运用。 【关键词】离散数学;二元关系;性质;判定 【中图分类号】G64【文献标识码】A【文章编号】2095-3089(2013)4-0-02 离散数学是现代数学的一个重要分支,是计算机科学的理论基础和核心课程。关系是离散数学中非常重要的一个基本概念,关系的概念在
2、计算机科学是也是最基本的,它在形式语言、编译程序设计、信息检索、数据结构、算法分析、数据库和有限自动机等方面起着重要作用。 关系是一个使用得很频繁的词,如数集上大于关系、小于关系;平面集上的直线平行关系、三角形相似关系;人群集合上的父子关系、同乡关系等,这些都是离散数学中的关系研究的范畴。所以,离散数学中的关系是一个抽象的概念,定义为笛卡尔积A1×A2×…×An的任意一个子集。二元关系是我们讨论的重点内容,定义为笛卡尔积A1×7A2的任意子集。关系的性质是关系的基本属性,是认识和分析关系的关键。关
3、系的基本性质主要包括自反、反自反、对称、反对称以及传递性。如何判定关系的性质是我们必须要掌握的方法。关系基本性质的判定主要有四种方法:第一是直接根据定义判定;第二是根据定理判定;第三是根据关系图判定;第四是根据关系矩阵判定。本文将对这四种方法进行讨论。 1根据定义判定 定义:设ρ是集合A上的二元关系, 1)若对于所有的a∈A,有(a,a)∈ρ,则称ρ是自反的。否则,称ρ是非自反的。 2)若对于所有的a∈A,有(a,a)?ρ,则称ρ是反自反的。 3)对于所有的a,b∈A,若每当有(a,b)∈
4、ρ时就有(b,a)∈ρ,则称ρ是对称的。否则,称ρ是非对称的。 4)对于所有的a,b∈A,若每当有(a,b)∈ρ和(b,a)∈ρ时,就必有a=b,则称ρ是反对称的。 5)对于所有的a,b,c∈A,若每当有(a,b)∈ρ和(b,c)∈ρ时,就必有(a,c)∈ρ,则称ρ是可传递的。否则,称ρ是不可传递的。 对于自反性,根据定义可以发现,当ρ包含了恒等关系IA时,它一定是自反的。由于IA中的序偶的个数刚好等于#A(A集合的基数),因此也可以得出这样的结论,若ρ是自反的,则ρ中序偶的个数大于或等于#A
5、。即,当ρ中序偶的个数小于#A时,它一定不是自反的;当ρ中序偶的个数大于或等于#A时,它有可能是自反的。所以,根据关系中序偶数大于或等于#A,可以作为判断自反性的必要条件。 在判定对称、反对称和传递性时必须明确,如果指定了条件,那么不满足条件的一定不属于定义对象;满足条件的就肯定属于定义的对象;而“不违背”7条件的,也属于定义对象。这符合逻辑学中蕴含式的规则,当蕴含式的前件为真,后件为假时,结论为假;当前件为真,后件为真时,结论为真;而当前件为假时,无论后件是真是假,结论均为真。 于是对于关系ρ
6、,若当任意两个不同的元素a,b间不存在(a,b)∈ρ的问题时,也就没有必要再讨论(b,a)∈ρ或(b,a)?ρ了,而此时ρ是满足对称性的。 对于所有的a,b∈A,若不存在(a,b)∈ρ和(b,a)∈ρ,则可以肯定ρ是反对称的。 对于反对称,我们还可以这样理解,即,若对于所有的a,b∈A且a≠b,若(a,b)∈ρ和(b,a)∈ρ不同时存在,也说明ρ是反对称的。这只是将上述定义中的第四条换了一种角度来理解,其实就是原定义的逆否命题,由于逆否命题与原命题等价,所以在某些情况下,当上述定义中的第四条不方
7、便直接判定时,也可以用它来作为判定的依据。 对于所有的a,b,c∈A,若ρ中不存在(a,b)∈ρ和(b,c)∈ρ时,此时也不需要再讨论(a,c)∈ρ或(a,c)?ρ了,可以断定此时ρ必定是可传递的。 如A上的恒等关系IA,根据以上讨论,可以判定IA是自反的、对称的、反对称的和可传递的。因为根据IA的定义及特点,首先可以判定它是自反的;再由于集合A中任意两个不同元素间均没有IA关系,所以,根据“不违背条件的,均属于定义对象”的原则,可以判定IA既是对称的,又是反对称的,并且是可传递的。并由此可以看
8、出。对称与反对称是一对可以相兼容的性质。7 根据定义来判定关系的性质是最基本的方法,它几乎适用于所有的情况,不管是有限集上的关系还是无限集上的关系。但是,有时未免烦琐,特别是关系中列举了较多序偶对时,用定义来判定就不那么直观并且容易有遗漏。 2根据定理判定 定理:设ρ是A上关系,IA为A上恒等关系,则 1)ρ是自反的当且仅当IA?ρ, 2)ρ是反自反的当且仅当IA∩ρ=φ, 3)ρ是对称的当且仅当ρ-1=ρ, 4)ρ是反对称的当且仅当ρ∩ρ-1?IA,
此文档下载收益归作者所有