欢迎来到天天文库
浏览记录
ID:23587459
大小:401.00 KB
页数:12页
时间:2018-11-09
《全等三角形的提高拓展训练(学生版)he全等三角形经典题型题(含答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个
2、三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等
3、进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】(年北京中考题)已知中,,、分别平分和,、交于点,试判断、、的数量关系,并加以证明. 12【例1】如图,点为正三角形的边所在直线上的任意一点(点除外),作,射线与外角的平分线交于点,与有怎样的数量关系?【变式拓展训练】如图,点为正方形的边上任意一点,且与外角的平分线交于点,与有怎样的数量关系?【例2】已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.【例3】以的、为边向三角形外作等边、,连结、相交于
4、点.求证:平分.12【例1】(北京市、天津市数学竞赛试题)如图所示,是边长为的正三角形,是顶角为的等腰三角形,以为顶点作一个的,点、分别在、上,求的周长.【例2】五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDE板块二、全等与角度【例7】如图,在中,,是的平分线,且,求的度数.【例8】在等腰中,,顶角,在边上取点,使,求.12【例9】(“勤奋杯”数学邀请赛试题)如图所示,在中,,,又在上,在上,且满足,,求.【例10】在四边形中,已知,,,,求的度数.【例11】(日本算术奥林匹克试题)如图所示,在四边形
5、中,,,,,求的度数.12【例10】(河南省数学竞赛试题)在正内取一点,使,在外取一点,使,且,求.【例11】(北京市数学竞赛试题)如图所示,在中,,为内一点,使得,,求的度数.全等三角形证明经典20题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADADBC延长AD到E,使DE=AD,12则三角形ADC全等于三角形EBD即BE=AC=2在三角形ABE中,AB-BE6、过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC2.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CACDB证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BDAC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C7、3.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF因为CE⊥AB所以∠CEB=∠CEF=90°12因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE5.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB8、+DC。证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,
6、过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC2.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CACDB证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BDAC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C
7、3.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF因为CE⊥AB所以∠CEB=∠CEF=90°12因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE5.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB
8、+DC。证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,
此文档下载收益归作者所有