2018高考数学空间几何高考真题

2018高考数学空间几何高考真题

ID:23586698

大小:864.00 KB

页数:41页

时间:2018-11-09

2018高考数学空间几何高考真题_第1页
2018高考数学空间几何高考真题_第2页
2018高考数学空间几何高考真题_第3页
2018高考数学空间几何高考真题_第4页
2018高考数学空间几何高考真题_第5页
资源描述:

《2018高考数学空间几何高考真题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD格式可编辑2017年高考数学空间几何高考真题 一.选择题(共9小题)1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(  )A.B.C.D.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(  )A.πB.C.D.3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则(  )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC4.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )A.60B.30C.20D.10专业技术资料分享W

2、ORD格式可编辑5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(  )A.+1B.+3C.+1D.+36.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则(  )A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为(  )专业技术资料分享WORD格式可编辑A.90πB.63πC

3、.42πD.36π1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(  )A.10B.12C.14D.162.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为(  )A.B.C.D. 二.填空题(共5小题)8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为  .9.长方

4、体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为  .10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为  .11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为  .专业技术资料分享WORD格式可编辑12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是  . 三.解答题(共9小题)13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=D

5、C,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.专业技术资料分享WORD格式可编辑15.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.16.如图,直三棱柱ABC﹣A1B1C1的底面为直角三角

6、形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.专业技术资料分享WORD格式可编辑18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所

7、成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。