信息论与编码理论第二章习题答案(王育民)

信息论与编码理论第二章习题答案(王育民)

ID:23542164

大小:133.75 KB

页数:6页

时间:2018-11-08

信息论与编码理论第二章习题答案(王育民)_第1页
信息论与编码理论第二章习题答案(王育民)_第2页
信息论与编码理论第二章习题答案(王育民)_第3页
信息论与编码理论第二章习题答案(王育民)_第4页
信息论与编码理论第二章习题答案(王育民)_第5页
资源描述:

《信息论与编码理论第二章习题答案(王育民)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、部分答案,仅供参考。2.1信息速率是指平均每秒传输的信息量点和划出现的信息量分别为,一秒钟点和划出现的次数平均为一秒钟点和划分别出现的次数平均为那么根据两者出现的次数,可以计算一秒钟其信息量平均为2.3解:(a)骰子A和B,掷出7点有以下6种可能:A=1,B=6;A=2,B=5;A=3,B=4;A=4,B=3;A=5,B=2;A=6,B=1概率为6/36=1/6,所以信息量-log(1/6)=1+log3≈2.58bit(b)骰子A和B,掷出12点只有1种可能:A=6,B=6概率为1/36,所以信息量-log(1/36)=2+log9≈5.17bit2.5解:出现各点数的概

2、率和信息量:1点:1/21,log21≈4.39bit;2点:2/21,log21-1≈3.39bit;3点:1/7,log7≈2.81bit;4点:4/21,log21-2≈2.39bit;5点:5/21,log(21/5)≈2.07bit;6点:2/7,log(7/2)≈1.81bit平均信息量:(1/21)×4.39+(2/21)×3.39+(1/7)×2.81+(4/21)×2.39+(5/21)×2.07+(2/7)×1.81≈2.4bit2.7解:X=1:考生被录取;X=0:考生未被录取;Y=1:考生来自本市;Y=0:考生来自外地;Z=1:考生学过英语;Z=0:

3、考生未学过英语P(X=1)=1/4,P(X=0)=3/4;P(Y=1/X=1)=1/2;P(Y=1/X=0)=1/10;P(Z=1/Y=1)=1,P(Z=1/X=0,Y=0)=0.4,P(Z=1/X=1,Y=0)=0.4,P(Z=1/Y=0)=0.4(a)P(X=0,Y=1)=P(Y=1/X=0)P(X=0)=0.075,P(X=1,Y=1)=P(Y=1/X=1)P(X=1)=0.125P(Y=1)=P(X=0,Y=1)+P(X=1,Y=1)=0.2P(X=0/Y=1)=P(X=0,Y=1)/P(Y=1)=0.375,P(X=1/Y=1)=P(X=1,Y=1)/P(Y=1)

4、=0.625I(X ;Y=1)==部分答案,仅供参考。2.1信息速率是指平均每秒传输的信息量点和划出现的信息量分别为,一秒钟点和划出现的次数平均为一秒钟点和划分别出现的次数平均为那么根据两者出现的次数,可以计算一秒钟其信息量平均为2.3解:(a)骰子A和B,掷出7点有以下6种可能:A=1,B=6;A=2,B=5;A=3,B=4;A=4,B=3;A=5,B=2;A=6,B=1概率为6/36=1/6,所以信息量-log(1/6)=1+log3≈2.58bit(b)骰子A和B,掷出12点只有1种可能:A=6,B=6概率为1/36,所以信息量-log(1/36)=2+log9≈5.

5、17bit2.5解:出现各点数的概率和信息量:1点:1/21,log21≈4.39bit;2点:2/21,log21-1≈3.39bit;3点:1/7,log7≈2.81bit;4点:4/21,log21-2≈2.39bit;5点:5/21,log(21/5)≈2.07bit;6点:2/7,log(7/2)≈1.81bit平均信息量:(1/21)×4.39+(2/21)×3.39+(1/7)×2.81+(4/21)×2.39+(5/21)×2.07+(2/7)×1.81≈2.4bit2.7解:X=1:考生被录取;X=0:考生未被录取;Y=1:考生来自本市;Y=0:考生来自外

6、地;Z=1:考生学过英语;Z=0:考生未学过英语P(X=1)=1/4,P(X=0)=3/4;P(Y=1/X=1)=1/2;P(Y=1/X=0)=1/10;P(Z=1/Y=1)=1,P(Z=1/X=0,Y=0)=0.4,P(Z=1/X=1,Y=0)=0.4,P(Z=1/Y=0)=0.4(a)P(X=0,Y=1)=P(Y=1/X=0)P(X=0)=0.075,P(X=1,Y=1)=P(Y=1/X=1)P(X=1)=0.125P(Y=1)=P(X=0,Y=1)+P(X=1,Y=1)=0.2P(X=0/Y=1)=P(X=0,Y=1)/P(Y=1)=0.375,P(X=1/Y=1)=

7、P(X=1,Y=1)/P(Y=1)=0.625I(X ;Y=1)===0.375log(0.375/0.75)+0.625log(0.625/0.25)=(5/8)log5-1≈0.45bit(b)由于P(Z=1/Y=1)=1,所以P(Y=1,Z=1/X=1)=P(Y=1/X=1)=0.5P(Y=1,Z=1/X=0)=P(Y=1/X=0)=0.1那么P(Z=1/X=1)=P(Z=1,Y=1/X=1)+P(Z=1,Y=0/X=1)=0.5+P(Z=1/Y=0,X=1)P(Y=0/X=1)=0.5+0.5*0.4=0.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。