北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

ID:23399179

大小:795.50 KB

页数:34页

时间:2018-11-07

北京理工大学随机信号分析实验报告_第1页
北京理工大学随机信号分析实验报告_第2页
北京理工大学随机信号分析实验报告_第3页
北京理工大学随机信号分析实验报告_第4页
北京理工大学随机信号分析实验报告_第5页
资源描述:

《北京理工大学随机信号分析实验报告》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、WORD格式可编辑本科实验报告实验名称:随机信号分析实验课程名称:随机信号分析实验时间:任课教师:实验地点:实验教师:实验类型:□原理验证■综合设计□自主创新学生姓名:学号/班级:组号:学院:同组搭档:专业:成绩:专业技术资料整理WORD格式可编辑实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。2、实现随机序列的数字特征估计。二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数

2、是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。(0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。下面给出了上式的3组常用参数:1、,周期;2、(IBM随机数发生器)周期;3、(ran0)周期;由均匀分

3、布随机数,可以利用反函数构造出任意分布的随机数。定理1.1若随机变量X具有连续分布函数FX(x),而R为(0,1)均匀分布随机变量,则有由这一定理可知,分布函数为FX(x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。2、MATLAB中产生随机序列的函数专业技术资料整理WORD格式可编辑(1)(0,1)均匀分布的随机序列函数:rand用法:x=rand(m,n)功能:产生m×n的均匀分布随机数矩阵。(2)正态分布的随机序列函数:randn用法:x=randn(m,n)功能:产生m×n的标准正态分布随机数矩阵。如果要产生服从分布的随机序列,则可以由标准正态随

4、机序列产生。(3)其他分布的随机序列MATLAB上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。MATLAB中产生随机数的一些函数3、随机序列的数字特征估计对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X(n)的均值、方差和自相关函数的估计为利用MATLAB的统计分析函数可以分析随机序列的数字特征。(1)均值函数函数:mean用法:m=mean(x)功能:返回按上面第一式估计X(n)的均值,其中x为样本序列x(n)。专业技术资料整理WO

5、RD格式可编辑(2)方差函数函数:var用法:sigma2=var(x)功能:返回按上面第二式估计X(n)的方差,其中x为样本序列x(n),这一估计为无偏估计。(3)互相关函数函数:xcorr用法:c=xcorr(x,y)c=xcorr(x)c=xcorr(x,y,'opition')c=xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。option选项可以设定为:'biased'有偏估计,即'unbiased'无偏估计,即按上面第三式估计。'coeff'm=0时的相关函数值归一化为1。

6、'none'不做归一化处理。三、实验内容1、采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。改变样本个数重新计算。线性同余法的公式如下:实验代码:Num=input('Num=');N=2^31;k=2^16+3;Y=zeros(1,num);X=zeros(1,num);Y(1)=1;fori=2:num专业技术资料整理WORD格式可编辑Y(i)=mod(k*Y(i-1),N);endX=Y/N;a=0;b=1;m0=(a+b)/2;sigma0=(b-a)^2/12;m=mean(X);sigma=var(X);delta_

7、m=abs(m-m0);delta_sigma=abs(sigma-sigma0);plot(X,'k');xlabel('n');ylabel('X(n)');delta_mdelta_sigmaaxistight实验结果:A、Num=1000delta_=0.0110delta_sigma=0.0011专业技术资料整理WORD格式可编辑A、Num=5000delta_m=2.6620e-04delta_sigma=0.0020实验结果分析:样本值越大,实际值越接近理论值,误差越小。2、参数为的指数分布的分布函数为专业技术资料整理WORD格式可编辑

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。