欢迎来到天天文库
浏览记录
ID:23372148
大小:552.50 KB
页数:18页
时间:2018-11-06
《生物统计学教(学)案(10)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、WORD格式可编辑生物统计学教案第十章一元回归及简单相关分析教学时间:5学时教学方法:课堂板书讲授教学目的:重点掌握一元线性回归方程,掌握一元线性回归方程的检验和相关,了解一元非线性回归和多元回归与相关。讲授难点:一元线性回归方程的检验和相关10.1回归与相关的基本概念函数关系:F=ma相关关系:单位面积的施肥量、播种量和产量;血压和年龄;胸径和高度;玉米的穗长和穗重;身高和体重。相关:设有两个随机变量X和Y,对于任一随机变量的每一个可能的值,另一个随机变量都有一个分布与之相对应,称X和Y存在相关。回归:对于变量X的每一个可能的值xi,都有随机变量Y的一个分布相
2、对应,则称随机变量Y对变量X存在回归。X称为自变量,Y称为因变量。条件平均数:当X=xi时Y的平均数μY.X=xi,称为条件平均数。10.2一元线性回归方程10.2.1散点图NaCl含量X(g/kg土壤)00.81.62.43.24.04.8干重Y(mg/dm2)809095115130115135例不同NaCl含量对单位叶面积干物质的影响专业技术资料分享WORD格式可编辑从上图虽可以看出Y对X的线性关系,但点子并不在一条直线上。例每一NaCl含量下干物质10次重复值干重(mg/dm2)重复值NaCl含量(g/kg土壤)00.81.62.43.24.04.818
3、09095115130115135210085899410612513737510711510310312812848993921101101431275911031151131281321556799212010813112113271017895121117129148885105951101211121179839310510811412013410798598111116130132平均值86.293.1101.9109.3117.6125.5134.5如果增加每一NaCl浓度下的重复次数,用其平均值画成散点图,则点子直线化的程度要好得多。上表给出10次
4、重复的平均值,从下图中可见,点子更接近在一条直线上。当以Y的条件平均数所做的散点图,则完全在一条上。专业技术资料分享WORD格式可编辑10.2.2一元正态线性回归模型xi和各xi上Y的条件平均数μy.x可构成一条直线:μY=α+βX对于变量X的每一个值,都有一个Y的分布,其平均数是上式所示的线性函数。对于随机变量Y:Y=α+βX+εε:NID(0,σ2)Y:NID(α+βX,σ2)上式称为一元正态线性回归模型。10.2.3参数α和β的估计在实际工作中,我们是无法得到α和β的,只能得到它们的估计值a和b,从而得到一条估计的回归线:上式称为Y对X的回归方程,所画出的
5、直线称为回归线。a是直线的截距,称为常数项;b是直线的斜率,称为回归系数。对于因变量Y的每一个观测值yi:yi=a+bxi+eiyi的回归估计值是对的估计,因此也是平均数。在各种离差平方和中,以距平均数的离差平方和为最小。因此我们就把ei=yi-平方和为最小的直线作为最好的回归线。专业技术资料分享WORD格式可编辑记,求出使L达到最小时的a和b,这种方法称为最小二乘法。为使达到最小,令:可以得到以下一组联立方程:解该方程组,得到β的最小二乘估计:及a的最小二乘估计:公式的分子部分称为X和Y的校正交叉乘积和,以SXY表示。分母部分称为X的校正平方和,以SXX表示。
6、因变量Y的平方和称为总平方和,以SYY表示。因此,b又可以表示为:专业技术资料分享WORD格式可编辑10.2.4回归方程的计算XX’=X-2.4X’2YY’=Y-110Y’2X’Y’0-2.45.7680-30900720.8-1.62.5690-20400321.6-0.80.6495-15225122.40011552503.20.80.6413020400164.01.62.5611552584.82.45.761352562560和017.92-102600200由此得出回归方程:回归系数的含义是:当自变量X每变动一个单位,因变量Y平均变动11.16个单
7、位。专业技术资料分享WORD格式可编辑10.3一元线性回归的检验10.3.1b和a的数学期望和方差上式中的σ2是由ε得到的,ε是实际观测值与总体回归估计值的离差。由于α和β都是未知的,因此无法得到εi,只能用εi的估计值ei,。称为误差平方和即为SSe专业技术资料分享WORD格式可编辑可以证明MSe是σ2的无偏估计量,因此样本回归系数b的方差a的方差根据表10-2中的7套重复数据(细线所示),和它们的平均数(粗虚线所示)所绘出的回归线。如果无限增加重复次数,最终将得到一条直线μY=α+βX。实际上这条直线是无法获得的,只能得到它的估计直线(由一套或几套数据获得)
8、,。这些估计直线是总体回
此文档下载收益归作者所有