欢迎来到天天文库
浏览记录
ID:22968802
大小:371.50 KB
页数:18页
时间:2018-11-02
《数学课例研究报告》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学课例研究报告一.研究目标基本目标:通过研究体现数学课堂教学中学生学生主体作用的激发、学生参与作用的操作、学生能力培养方面的发挥、教学策略多样化、教学模式系列化的课堂教学实例及理论成果。衍生目标:在研究中,通过课例实践,让学生在“做中学”,激发和增强对学习数学的兴趣,体验自主学习与探究思考的过程,发现和掌握数学学习方法,建构自己的数学知识体系,发展自己的数学思维,感悟数学之美,提高数学学习水平。二、课题研究的内容与方法(一)研究的内容课例研究,是最基础的教学实践研究,从课例中,我们可以观察到的教与学实践过程要素是:●关于教师的教:A、教学设计的适切性(包涵信息
2、技术应用的适切性)B、教学过程的生成性(教学机智)C、教学评价的有效性关于学生的学:A、学习的准备B、学习的注意程度C、数学思维的深度、广度、灵活性D、知识巩固能力●关于信息技术与数学课程整合的过程:构建有效教学过程,促进学生意义建构因此,我们的研究内容主要包括对课例的系统分析、总结和课例要素的观察分析。(二)研究的方法本课题主要采用行动研究法。以信息技术与初中数学课程整合的研究为载体,把探索研究结果与运用研究成果结合起来,边设计边实施,边实施边修正,边修正边反思,促进课题研究的深入。重点初中各年级的教材内容为主,选择一些突破口。选择若干个点分析其理论基础、内容
3、特点、技术特征、学生的学习方式、学习结果及学生的个性发展等进行研究。课例研究的流程包括五个步骤:(1)课前分析(教学内容分析、学生分析);(2)教学设计;(3)课堂教学观察;(4)教学反思;(5)教学过程建模。三、研究的过程第一阶段:行动序曲初步的个人备课和准备阶段:1.研讨课例研究目标的构建与课例内容的确立,形成课例的初步研究方案。2.制定和申报课例研究方案,成立课例研究组。第二阶段:实践探索:1.开展课例研究工作,确定有关研究课的内容,注重集体研讨。2搜集、整理内容,以便有计划、有系统地进行研究。3.有实验教师讲课,研究小组听课、评课,形成一定的教学模式。第
4、三:课后反思第四阶段:全面总结课题研究工作,撰写集体备课笔记四:课例研修报告:课例名称:1、一元二次方程教师:王伟课时数:一课时课型:新授课 一元二次方程4.分解因式法一、学生知识状况分析学生的知识技能基础:在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了解一元一次方程的方法,熟练掌握了解一元一次方程的步骤;在八年级学生学习了分解因式,掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;在本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。
5、学生活动经验基础:在相关知识的学习过程中,学生已经经历了用配方法和公式法求一元二次方程的解的过程,并在现实情景中加以应用,切实提高了应用意识和能力,也感受到了解一元二次方程的必要性和作用;同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 二、教学任务分析教科书基于用分解因式法解一元二次方程是解决特殊问题的一种简便、特殊的方法的基础之上,提出了本课的具体学习任务:能根据已有的分解因式知识解决形如“x(x-a)=0”和“x2-a2=0”的特殊一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个
6、近期目标。数学教学由一系列相互联系而又渐次递进的课堂组成,因而具体的课堂教学也应满足于远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《分解因式法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“经历由具体问题抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效数学模型,并在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。”同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:教学目标1、能根据具体一元二次方程的特征,
7、灵活选择方程的解法,体会解决问题方法的多样性;2、会用分解因式法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程;3、通过分解因式法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。4、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方法,并初步学会不同方法之间的差异,学会在与他人的交流中获益。三、教学过程分析本节课设计了七个教学环节:第一环节:复习回顾;第二环节:情境引入,探究新知;第三环节:例题解析;第四环节:巩固练习;第五环节:拓展延伸;第六环节:感悟与收获;第七环节:布置作业。 第一环节:复习回顾内容:
8、1、用配方法解一元二次方
此文档下载收益归作者所有