欢迎来到天天文库
浏览记录
ID:22846188
大小:162.00 KB
页数:25页
时间:2018-11-01
《基于动态集成lssvr的超短期风电功率预测》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、基于动态集成LSSVR的超短期风电功率预测摘要:?对最小二乘支持向量回归(LeastSquareSupportVectorRegression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(SupervisoryControlAndDataAcquisition,SCADA)与数值天气预报(NumericalWeatherPrediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多
2、样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显.关键词:超短期风电功率预测;最小二乘支持向量回归;动态集成;动态时间弯曲距离;数值天气预中图分类号:TM614文献标志码:AUltra-short-termWindPowerPredictionBasedonDynamicalEnsembleLeastS
3、quareSupportVectorRegressionLIURongshengl,PENGMinfangl,ZHANGHaiyanl,WANXun2,SHENMeie3(1.CollegeofElectricalandInformationEngineering,HunanUniversity,Changsha410082,China;2.StateGridHunanElectricPowerCompanyElectricPowerResearchInstitute,Changsha410007,China;3.ComputerSchoolBeijingInformationScience
4、&TechnologyUniversity,Beijing100101,China)Abstract:Forthelimitationofleastsquaresupportvectorregression(LSSVR)inmodelingthetimevaryingfeatureofwindpower,anultra-short-termwindpowerprediction(USTWPP)modelbasedondynamicalensembleLSSVRwasproposed.Firstly,theoff-lineLSSVRmodellibrarywascreatedbymakingu
5、seofthehistoricaldatawhichwereobtainedfromNumericalWeatherPrediction(NWP)andsupervisorycontrolanddataacquisition(SCADA)systemofwindfarm.Then,thecandidatemembersofensembleLSSVRwereselectedfromoff-lineLSSVRmodellibrarydynamicallyaccordingtothesimilaritybetweentheNWPofforecastingperiodandtheNWPoftrain
6、ingperiod.Theensemblemembersweredecidedbyconsideringtheaccuracyanddiversity.Finally,theweightsofensembleLSSVRmemberswereassignedaccordingtothesimilaritybetweentheNWPoftrainingandNWPofpredictionperiod.ThevalidityofthedynamicalensembleLSSVRbasedpredictorwasverifiedbypredictingthewindpowerofawindfarmi
7、nHunanProvince.Comparedwithpersistencemethod(PM),autoregressiveintegratedmovingaverage(AGIMA),LSSVR,constantweightensembleLSSVR,andensembleartificialneuralnetworks(ANN),thedynamicalensembleLSSVRismoreaccura
此文档下载收益归作者所有