欢迎来到天天文库
浏览记录
ID:22837915
大小:175.00 KB
页数:36页
时间:2018-10-31
《小学数学应用题各类型详解大全》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2页小学数学典型应用题详解小学数学典型应用题大全 小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。应用题可分为一般应用题与典型应用题。没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要研究以下30类典型应用题。第2页小学数学典型应用
2、题详解目录1 归一问题22 归总问题13 和差问题24 和倍问题35 差倍问题46 倍比问题57 相遇问题68 追及问题79 植树问题810 年龄问题911 行船问题2012 列车问题2113 时钟问题2314 盈亏问题2315 工程问题1416 正反比例问题1617 按比例分配问题1718 百分数问题1819“牛吃草”问题2020 鸡兔同笼问题2121 方阵问题2322 商品利润问题2423 存款利率问题2524 溶液浓度问题2625 构图布数问题2726 幻方问题2827 抽屉原则问题2928
3、 公约公倍问题3029 最值问题3130 列方程问题32第34页,共34页小学数学典型应用题详解1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱? 0.6÷5
4、=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。例2 3台拖拉机3天耕地90公顷,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷) (2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷) 列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。例3 5辆汽车4次可以运送100吨
5、钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材? 5×7=35(吨) (3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程
6、等。 【数量关系】 1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。第34页,共34页小学数学典型应用题详解 例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 解:(1)这批布总共有多少米? 3.2×791=2531.2(米) (2)现在可以做多少套? 2531.2÷2.8=904(套) 列成综合算式
7、 3.2×791÷2.8=904(套) 答:现在可以做904套。例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》? 解:(1)《红岩》这本书总共多少页?24×12=288(页) (2)小明几天可以读完《红岩》?288÷36=8(天) 列成综合算式 24×12÷36=8(天)答:小明8天可以读完《红岩》。例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天? 解:(1
8、)这批蔬菜共有多少千克? 50×30=1500(千克) (2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天) 列成综合算式 50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。 3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。 【数量关系】 大数=(和+差)÷2 小数=(和-差)÷2 【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。 例1 甲乙两班共有学生98人,
此文档下载收益归作者所有