圆锥曲线方程知识点总结

圆锥曲线方程知识点总结

ID:22739723

大小:338.50 KB

页数:7页

时间:2018-10-31

圆锥曲线方程知识点总结_第1页
圆锥曲线方程知识点总结_第2页
圆锥曲线方程知识点总结_第3页
圆锥曲线方程知识点总结_第4页
圆锥曲线方程知识点总结_第5页
资源描述:

《圆锥曲线方程知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD文档下载可编辑§8.圆锥曲线方程知识要点一、椭圆方程.1.椭圆方程的第一定义:⑴①椭圆的标准方程:i.中心在原点,焦点在x轴上:.ii.中心在原点,焦点在轴上:.②一般方程:.③椭圆的标准方程:的参数方程为(一象限应是属于).⑵①顶点:或.②轴:对称轴:x轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是我们称此方程为共离心率的椭圆系方程.⑸若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得).若是双曲线,则

2、面积为.二、双曲线方程.专业资料整理分享WORD文档下载可编辑1.双曲线的第一定义:⑴①双曲线标准方程:.一般方程:.⑵①i.焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii.焦点在轴上:顶点:.焦点:.准线方程:.渐近线方程:或,参数方程:或.②轴为对称轴,实轴长为2a,虚轴长为2b,焦距2c.③离心率.④准线距(两准线的距离);通径.⑤参数关系.⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:

3、的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.专业资料整理分享WORD文档下载可编辑小结:1.过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能

4、有0、2、3、4条.2.若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:从双曲线一个焦点到另一条渐近线的距离等于b.2:P到焦点的距离为m=n,则P到两准线的距离比为m︰n.简证:=.三、抛物线方程.3.设,抛物线的标准方程、类型及其几何性质:图形焦点准线范围对称轴轴轴顶点(0,0)离心率焦点注:①顶点.②则焦点半径;则焦点半径为.③通径为2p,这是过焦点的所有弦中最短的.④(或)的参数方程为(或)(为参数).专业资料整理分享WORD文档下载可编辑四、圆锥曲线的统一定义..4.圆锥

5、曲线的统一定义:平面内到定点F和定直线的距离之比为常数的点的轨迹.当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线;当时,轨迹为圆(,当时).注:椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>

6、F1F2

7、)的点的轨迹1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<

8、F1F2

9、)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(01)与定点和直线的距离相等的点的轨迹.方程标准方程(>0)(a>0,b>0)y2=2p

10、x参数方程(t为参数)范围─a£x£a,─b£y£b

11、x

12、³a,yÎRx³0中心原点O(0,0)原点O(0,0)顶点(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a,虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0),F2(─c,0)焦距2c(c=)2c(c=)离心率e=1专业资料整理分享WORD文档下载可编辑准线x=x=渐近线y=±x焦半径通径2p焦参数P圆锥曲线一.基本概念练习:1、已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P

13、到抛物线焦点距离之和取得最小值时,点P的坐标为2、已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为3、抛物线的焦点坐标是,准线方程是。焦点和准线的形式统一性二、各种不同的考法考点一:考方程形式练习:1、”是”方程表示焦点在y轴上的椭圆”的()()(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件高2、设椭圆(,)的焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为3、曲线的虚轴长是实轴长的两倍,则4、如果表示焦点在轴上的椭圆,那么实数的取值范围是5、椭圆的离心率为,则的值为_____

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。