《mullin效应》word版

《mullin效应》word版

ID:22689619

大小:235.51 KB

页数:43页

时间:2018-10-30

《mullin效应》word版_第1页
《mullin效应》word版_第2页
《mullin效应》word版_第3页
《mullin效应》word版_第4页
《mullin效应》word版_第5页
资源描述:

《《mullin效应》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、橡胶材料的Mullins效应橡胶包括天然和合成橡胶,是添加了其他成分的一种无定形聚合物。未硫化橡胶称为胶料。经过加热硫化之后变成为橡胶。橡胶也常称作弹胶体,它有易变形的高弹性特性。一般橡胶在室温以上时往往呈现黏弹性,在变形过程中耗散能量。如同其他机械构件一样,橡胶构件也会因疲劳而失效,因而橡胶的长期耐久性显得更为重要。橡胶本质上是一种凝聚态的“气体”,聚合之前的橡胶分子单体大部分是气态的。橡胶的密度比单体气态的密度一般大3个量级左右,而黏性要高4个量级。如同其他高分子材料,通过聚合可以产生长链的高分子,图11.1.1显示了一种典型的

2、高分子结构,这些高分子可以组合成无定形态(橡胶态)、玻璃态或结晶态的。橡胶是无定形的,其分子的形态是随机卷曲的。在工程应用中绝大多数天然橡胶和合成橡胶都需要填充一定的碳黑等各种填料来改善它们的强度、硬度、加工性能等特性,这些填料和橡胶长链分子之间通过物理化学作用形成网络从而增强橡胶。图11.1.2勾勒了典型的碳黑填充橡胶分子结构。玻璃态的聚合物硬而脆,结晶态的聚合物硬而韧,而橡胶态聚合物的特性在于其软、高度可伸张以及高弹性。图11.1.3显示了某种碳黑填充硫化橡胶静态应力.应变曲线,其中碳黑份量为33phr。碳黑填充橡胶的力学特性,

3、无论是静态特性还是动态特性,在本质上都是非线性的,同时具有时(率)温相关的黏弹性能。图11.1.4显示了某胎面胶动态力学特性温度谱。工程橡胶的玻璃化转变温度一般在一50。c左右,所以在图11.1_4中没有转变峰。将橡胶作为一种工程材料使用时,可以近似地用G=NkO来估算其剪切模量(其中N是网络链密度,K是玻尔兹曼常数,是开氏温度),因而许多未经增强的橡胶具有同等量级的模量G和硬度。碳黑的增强机理在于:一方面分散在橡胶基体中的碳黑通过吸附橡胶分子和形成包容胶达到增强效果;另一方面,碳黑粒子之间本身还会形成二级网络,对橡胶也起到一定的增

4、强作用。但是二级网络以及橡胶长链分子一碳黑粒子之间的网络在橡胶变形的过程中会发生破坏与重构,这种微观的变化过程深刻地影响橡胶的宏观力学性能。图11.1.5展示了一种碳黑填充氯丁橡胶的TEM电镜照片。填充橡胶的两个独特的力学特性是Mullins效应(静态软化特性)和Payne效应(动态软化特性)。如图11.1.6所示,当填充橡胶经历加载--卸载--重加载循环时,卸载应力和重加载应力要远远低于加载时的应力;重加载时,随着应变的增加,应力应变曲线首先沿着卸载路径,随着应变的进一步增加,应力应变曲线与所谓的主曲线(即一直加载的曲线,图中ab

5、b'cc'd)重合,橡胶的这种静态应力软化现象称为Mullins效应。这种效应对材料的循环加载特性也有影响。从唯象的观点看,橡胶的这种应力软化效应隐含说明材料的弹性刚度随着经历过的最大应变而减小。因此,一般认为Mullins效应是由弹性损伤引起的,可用超弹性损伤力学的方法描述。Payne效应描述填充橡胶动态力学性能的非线性特征,即储存模量随应变幅的增大而减小,损耗模量随应变幅的增大而增大、在达到一个极值后减小。图11.1.7表示某天然橡胶动态压缩时的Payne效应(单轴压缩,碳黑填充量.50phr,测试温度25。C,频率f=1Hz,

6、静态预压缩值为10%)。这一效应的研究对橡胶工程和橡胶物理都非常重要,也对黏弹性理论和本构模型提出了新的要求。在轮胎工业中,Payne效应与新型高性能胎面胶和低滚动阻力绿色轮胎的开发有关。橡胶的动态力学特性随其组分、温度、频率变化很大,根据不同的用途可以设计不同种类的橡胶。由于橡胶独特的和不可替代的力学性能,它广泛应用于汽车、航天器等许多工程结构之中。例如,当今一部普通汽车中使用的橡胶件即达100多种,包括轮胎、橡胶衬套、减振器等关键部件。对橡胶力学特性的研究孕育与推动了橡胶弹性统计理论以及有限应变弹性理论这两门学科的发展。本章阐述

7、橡胶力学特性的同时讨论轮胎力学若干重要课题。§11.2介绍橡胶本构理论,着重于应变能函数的描述和本构关系的数值实现;§11.3和§11一4分别讨论橡胶的Mullins效应和Payne效应;§11—5讨论轮胎能量损耗、滚动阻力的分析方法和有限元计算过程;§11—6采用环模型研究轮胎过障碍物动力学。§11-2橡胶本构理论计算机技术和计算力学的进展使得科学家和工程师已经可以利用数值技术和方法来进行橡胶制品的设计分析。然而有限元等数值方法对橡胶结构及其损伤和失效预测的可靠性,很大程度上依赖于对橡胶材料力学行为与生热机理的模拟与表征。精确地表

8、征与模拟橡胶材料独特的力学行为,成为预测与优化橡胶构件的使用性能、合理配置橡胶材料的关键和前提。自19世纪中叶以来,橡胶独特的应力应变行为就吸引了许多力学家和工程师的注意。发端于20世纪40年代的橡胶弹性统计理论、50年代的有限应变弹

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。