欢迎来到天天文库
浏览记录
ID:22685060
大小:7.15 MB
页数:174页
时间:2018-10-30
《北师大版高中数学《必修5》全部教(学)案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、专业技术资料整理分享北师大版高中数学必修5第一章《数列》全部教案第一课时1.1.1数列的概念一、教学目标1、知识与技能:(1)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。2、过程与方法:(1)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。3、情感态度与价值观:(1).通过日常生活中的大量实例,鼓励学生动
2、手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.二、教学重点:数列及其有关概念,通项公式及其应用.教学难点根据一些数列的前几项抽象、归纳数列的通项公式.三、教学方法:探究、交流、实验、观察、分析四、教学过程(一)、揭示课题:今天开始我们研究一个新课题. 先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问
3、:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.(二)、推进新课[合作探究]折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生一般折5、6次就不能折下去了,厚度太高了.师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?WO
4、RD文档下载可编辑专业技术资料整理分享生随着对折数厚度依次为:2,4,8,16,…,256,…;①随着对折数面积依次为,,,,…,,….生对折8次以后,纸的厚度为原来的256倍,其面积为原来的分1[]256式,再折下去太困难了.师说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生均是一列数.生还有一定次序.师它们的共同特点:都是有一定次序的一列数.[教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列
5、的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….同学们能举例说明吗?生例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.首项-------其中
6、数列的第一项也称首项.通项-------数列的第n项叫数列的通项.以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3
7、,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.WORD文档下载可编辑专业技术资料整理分享摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?生这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.4
8、、通项公式法:如数列的通项公式为; 的通项公式为; 的通项公式为; 数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 例如,数列的通项公式,则. 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公
此文档下载收益归作者所有