欢迎来到天天文库
浏览记录
ID:22664792
大小:106.50 KB
页数:14页
时间:2018-10-30
《材料疲劳裂纹扩展研究方案综述》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、材料疲劳裂纹扩展研究综述摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。关键词:温度;载荷频率;应力比;理论;方法;疲
2、劳裂纹扩展1前言19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解
3、决疲劳裂纹扩展问题的方法和理论。经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年),Elber的裂纹闭合理论(1971年),Wheeler等的超载迟滞模型(1970年),Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan(1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷
4、频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。2疲劳裂纹扩展研究现存问题如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表
5、明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K)的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用
6、过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的K.Sadanada和A.K.Vasudevan等人经过多年的研究[2],从理论上证明了“不论在平面应变还是平面应力条件下,在裂纹张开过程中产生的塑性区不能导致裂纹的闭合”,并且指出,由表面粗糙度、氧化等因素导致的裂纹的提前闭合虽然存在,但
7、在大部分情况下对裂纹尖端应力只有小的影响。3现有研究方法和常用理论模型近20年来,我国在材料疲劳裂纹扩展领域的研究主要以实际应用为背景,针对广泛应用的各种合金钢和铝合金进行。研究内容主要包括:①材料组织、力学性能[3-4]、应力比、低温环境[5]、盐水环境、载荷波形以及随机因素[6]在对裂纹扩展行为的影响;②通过建立各种数学模型对裂纹扩展的寿命进行估算,对裂纹扩展曲线进行拟合,对各影响参数(如疲劳裂纹扩展门槛值)和裂纹扩展速率的关系进行描述[7-8]③疲劳变形机理和小裂纹的扩展机理。在研究方法上,人们通常使用
8、线弹性断裂力学方法来研究裂纹的扩展问题。实践证明,对绝大部分材料而言,用这种方法处理的裂纹扩展速率试验结果可完全适用于工程中对含缺陷构件裂纹扩展寿命的预测。根据疲劳裂纹扩展的一般特性,da/dN(裂纹扩展速率)和△K的关系如图1所示。除了可以用Paris-Erdogan公式分3个区域分别描述这种关系外,还可以利用已有的模型表达全范围的da/dN—△K关系,如三分量模型和反双曲正切模型。虽然用全范围的
此文档下载收益归作者所有