2018挑战中考数学压轴题((全套))

2018挑战中考数学压轴题((全套))

ID:22643041

大小:4.34 MB

页数:42页

时间:2018-10-30

2018挑战中考数学压轴题((全套))_第1页
2018挑战中考数学压轴题((全套))_第2页
2018挑战中考数学压轴题((全套))_第3页
2018挑战中考数学压轴题((全套))_第4页
2018挑战中考数学压轴题((全套))_第5页
资源描述:

《2018挑战中考数学压轴题((全套))》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、专业资料整理分享第一部分函数图象中点的存在性问题§1.1 因动点产生的相似三角形问题§1.2 因动点产生的等腰三角形问题§1.3 因动点产生的直角三角形问题§1.4 因动点产生的平行四边形问题§1.5  因动点产生的面积问题§1.6因动点产生的相切问题§1.7因动点产生的线段和差问题第二部分图形运动中的函数关系问题§2.1  由比例线段产生的函数关系问题第三部分图形运动中的计算说理问题§3.1  代数计算及通过代数计算进行说理问题§3.2  几何证明及通过几何计算进行说理问题第四部分图形的平移、翻折与旋转§4.1  图形的平移§4.2  图形的翻折§4.3  图形的旋转§4.

2、4三角形§4.5 四边形§4.6 圆§4.7函数的图象及性质§1.1因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式

3、解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1图1图2例1湖南省衡阳市中考第28题二次函数y=ax2+

4、bx+c(a≠0)的图象与x轴交于A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;WORD文档下载可编辑专业资料整理分享(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?动感体验请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC的中点的正下方时,△APC的面积最大.拖动y轴上表示实数m的点运动,抛物

5、线的形状会改变,可以体验到,∠ACD和∠ADC都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC.3.讨论△ACD与△OBC相似,先确定△ACD是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD存在两种情况.图文解析(1)因为抛物线与x轴交于A(-3,0)、B(1,0)两点,设y=a(x+3)(x-1).代入点C(0,-3m),得-3m=-3a.解得a=m.所以该二次函数的解析式为y=m(x+3)(x-1)=mx2+2mx-3m.(2)如图3,连结OP.当m=2时,C(0,-6)

6、,y=2x2+4x-6,那么P(x,2x2+4x-6).由于S△AOP==(2x2+4x-6)=-3x2-6x+9,S△COP==-3x,S△AOC=9,所以S=S△APC=S△AOP+S△COP-S△AOC=-3x2-9x=.所以当时,S取得最大值,最大值为.图3图4图5图6(3)如图4,过点D作y轴的垂线,垂足为E.过点A作x轴的垂线交DE于F.由y=m(x+3)(x-1)=m(x+1)2-4m,得D(-1,-4m).在Rt△OBC中,OB∶OC=1∶3m.如果△ADC与△OBC相似,那么△ADC是直角三角形,而且两条直角边的比为1∶3m.①如图4,当∠ACD=90°时,

7、.所以.解得m=1.此时,.所以.所以△CDA∽△OBC.②如图5,当∠ADC=90°时,.所以.解得.此时,而.因此△DCA与△OBC不相似.综上所述,当m=1时,△CDA∽△OBC.WORD文档下载可编辑专业资料整理分享考点伸展第(2)题还可以这样割补:如图6,过点P作x轴的垂线与AC交于点H.由直线AC:y=-2x-6,可得H(x,-2x-6).又因为P(x,2x2+4x-6),所以HP=-2x2-6x.因为△PAH与△PCH有公共底边HP,高的和为A、C两点间的水平距离3,所以S=S△APC=S

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。