一元二次方程根的分布情况归纳

一元二次方程根的分布情况归纳

ID:22415896

大小:618.00 KB

页数:7页

时间:2018-10-29

一元二次方程根的分布情况归纳_第1页
一元二次方程根的分布情况归纳_第2页
一元二次方程根的分布情况归纳_第3页
一元二次方程根的分布情况归纳_第4页
一元二次方程根的分布情况归纳_第5页
资源描述:

《一元二次方程根的分布情况归纳》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程根的分布情况设方程的不等两根为且,相应的二次函数为,方程的根即为二次函数图象与轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表二:(两根与的大小比较)分布情况两根都小于即两根都大于即一个根小于,一个大于即大致图象()得出的结论大致图象()得出的结

2、论综合结论(不讨论)表三:(根在区间上的分布)分布情况两根都在内两根有且仅有一根在内(图象有两种情况,只画了一种)一根在内,另一根在内,大致图象()得出的结论或大致图象()得出的结论或综合结论(不讨论)——————根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)需满足的条件是(1)时,;(2)时,对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在内有以下特殊情况:若或,则此时不成立,但对于这种情况是知道了方程有一根为或,可以求出另外一根,然后可以根据另一根在区间内,从而可

3、以求出参数的值。如方程在区间上有一根,因为,所以,另一根为,由得即为所求;方程有且只有一根,且这个根在区间内,即,此时由可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程有且一根在区间内,求的取值范围。分析:①由即得出;②由即得出或,当时,根,即满足题意;当时,根,故不满足题意;综上分析,得出或根的分布练习题例1、已知二次方程有一正根和一负根,求实数的取值范围。解:由即,从而得即为所求的范围。例2、已知方程有两个不等正实根,求实数的取值范围。解:由或

4、即为所求的范围。例3、已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围。解:由即即为所求的范围。例4、已知二次方程只有一个正根且这个根小于1,求实数的取值范围。解:由题意有方程在区间上只有一个正根,则即为所求范围。(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在内,由计算检验,均不复合题意,计算量稍大)例1、当关于的方程的根满足下列条件时,求实数的取值范围:(1)方程的两个根一个大于2,另一个小于2;(2)方程的一个根在区间上,另一根在区间上;(3)方程的两根都小于0;变题:方程的两根

5、都小于-1.(4)方程的两根都在区间上;(5)方程在区间(-1,1)上有且只有一解;例2、已知方程在区间[-1,1]上有解,求实数m的取值范围.例3、已知函数f(x)的图像与x轴的交点至少有一个在原点右侧,求实数m的取值范围.检测反馈:1.若二次函数在区间上是增函数,则的取值范围是___________.2.若、是关于x的方程的两个实根,则的最小值为.3.若关于的方程只有一根在内,则__.4.对于关于x的方程x2+(2m-1)x+4-2m=0求满足下列条件的m的取值范围:(1)有两个负根(2)两个根都小于-1(3)

6、一个根大于2,一个根小于2(4)两个根都在(0,2)内(5)一个根在(-2,0)内,另一个根在(1,3)内(6)一个根小于2,一个根大于4(7)在(0,2)内有根(8)一个正根,一个负根且正根绝对值较大5.已知函数的图像与x轴的交点至少有一个在原点的右侧,求实数m的取值范围。2、二次函数在闭区间上的最大、最小值问题探讨设,则二次函数在闭区间上的最大、最小值有如下的分布情况:即图象最大、最小值对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论:(1)若,则,;(2)若,则,另外,当二次函数开口

7、向上时,自变量的取值离开轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开轴越远,则对应的函数值越小。二次函数在闭区间上的最值练习二次函数在闭区间上求最值,讨论的情况无非就是从三个方面入手:开口方向、对称轴以及闭区间,以下三个例题各代表一种情况。例1、函数在上有最大值5和最小值2,求的值。解:对称轴,故函数在区间上单调。(1)当时,函数在区间上是增函数,故;(2)当时,函数在区间上是减函数,故例2、求函数的最小值。解:对称轴(1)当时,(2)当时,;(3)当时,改:1.本题若修改为求函数的最

8、大值,过程又如何?解:(1)当时,;(2)当时,。2.本题若修改为求函数的最值,讨论又该怎样进行?解:(1)当时,,;(2)当时,,;(3)当时,,;(4)当时,,。例3、求函数在区间上的最小值。解:对称轴(1)当即时,;(2)当即时,;(3)当即时,例4、讨论函数的最小值。解:,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线,,当,,时原函数的图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。