征信数据—征信大数据的挖掘和风控应用

征信数据—征信大数据的挖掘和风控应用

ID:22396498

大小:180.00 KB

页数:6页

时间:2018-10-29

征信数据—征信大数据的挖掘和风控应用_第1页
征信数据—征信大数据的挖掘和风控应用_第2页
征信数据—征信大数据的挖掘和风控应用_第3页
征信数据—征信大数据的挖掘和风控应用_第4页
征信数据—征信大数据的挖掘和风控应用_第5页
资源描述:

《征信数据—征信大数据的挖掘和风控应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD文档可编辑互联网金融发展的关键是风险控制,“风险控制”已然成为诸多互联网金融企业能否长大的魔咒,这个不争的事实像一座大山摆在众多互联网金融大佬与创业者的面前。为什么阿里金融能够将它的网络小贷不良率控制在不到1%,有胆量再贷多点吗?大数据挖掘技术和互联网金融的风险控制到底是什么关系?互联网金融将怎样建立有效的风险控制生态体系?本文将带你揭开大数据挖掘与互联网金融风险控制的神秘面纱。最近互联网金融圈不仅自己玩的很开心,而且还拉上了金融界甚至央行的大佬们一起玩的很开心。尽管让互联网金融企业头痛的问题——央行征信系统不对市场开放,

2、仍然没有解决,但至少央行的态度明朗,支持互联网金融的发展,并认为互联网金融是传统金融的有益补充。生命的神奇之处在于它总能找到一个出口。作为新生事物的互联网金融也不例外,在那扇门朝他们关闭的同时,他们却找到了另外一扇窗。在亦步亦趋的探索中,他们中的大企业通过自身力量,小企业通过联合的力量找到了适合自身发展的风险控制生态系统,正朝着良性和有序的方向发展,正如凯文凯利在他的《失控》中描述的群氓智慧那只无形的手。互联网金融掌握了可以颠覆传统金融的风控技术在不依赖央行征信系统的情况下,市场自发形成了各具特色的风险控制生态系统。大公司通过大数

3、据挖掘,自建信用评级系统;小公司通过信息分享,借助第三方获得信用评级咨询服务。互联网金融企业的风控大致分为两种模式,一种是类似于阿里的风控模式,他们通过自身系统大量的电商交易以及支付信息数据建立了封闭系统的信用评级和风控模型。另外一种则是众多中小互联网金融公司通过贡献数据给一个中间征信机构,再分享征信信息。技术资料专业分享WORD文档可编辑  央行的征信系统是通过商业银行、其它社会机构上报的数据,结合身份认证中心的身份审核,提供给银行系统信用查询和提供给个人信用报告。但对于其它征信机构和互联金融公司目前不提供直接查询服务。2006

4、年1月开通运行的央行征信系统,至2013年初,有大概8亿人在其中有档案。在这个8亿人当中,只有不到3亿人有过银行或其他金融机构发生过借贷的记录,其中存在大量没有信贷记录的个人。而这些人却有可能在央行征信系统外的其它机构、互联网金融公司自己的数据系统中,存有相应的信贷记录。市场上一些线下小贷公司、网络信贷公司对于借贷人的信用评级信息需求非常旺盛,也因此催生了若干市场化征信公司,目前国内较大的具有代表性的市场化征信公司有几家:如北京安融惠众、上海资信、深圳鹏元等等。从P2P网贷公司和一些线下小贷公司采集动态大数据,为互联网金融企业提供

5、重复借贷查询、不良用户信息查询、信用等级查询等多样化服务是目前这些市场化的征信公司正在推进的工作。而随着加入这个游戏规则的企业越来越多,这个由大量动态数据勾勒的信用图谱也将越来越清晰。互联网海量大数据中与风控相关的数据技术资料专业分享WORD文档可编辑  互联网大数据海量且庞杂,充满噪音,哪些大数据是互联网金融企业风险控制官钟爱的有价值的数据类型?下图为大家揭示了互联网海量大数据中与风控相关的数据,以及哪些企业或产品拥有这些数据。(图)风控相关大数据及代表企业或产品利用电商大数据进行风控,阿里金融对于大数据的谋划可谓非一日之功。在

6、很多行业人士还在云里雾里的时候,阿里已经建立了相对完善的大数据挖掘系统。通过电商平台阿里巴巴、淘宝、天猫、支付宝等积累的大量交易支付数据作为最基本的数据原料,再加上卖家自己提供的销售数据、银行流水、水电缴纳甚至结婚证等情况作为辅助数据原料。所有信息汇总后,将数值输入网络行为评分模型,进行信用评级。信用卡类网站的大数据同样对互联网金融的风险控制非常有价值。申请信用卡的年份、是否通过、授信额度、卡片种类;信用卡还款数额、对优惠信息的关注等都可以作为信用评级的参考数据。国内最具代表性的企业是成立于2005年,最早开展网上代理申请信用卡业

7、务的“我爱卡”。其创始人涂志云和他的团队又在2013年推出了信用风险管理平台“信用宝”,利用“我爱卡”积累的数据和流量优势,结合其早年的从事的FICO(费埃哲)风控模型,做互联网金融小微贷款。技术资料专业分享WORD文档可编辑利用社交网站的大数据进行网络借贷的典型是美国的LendingClub。Lendingclub于2007年5月24日在facebook上开张,通过在上面镶嵌的一款应用搭建借贷双方平台。利用社交网络关系数据和朋友之间的相互信任聚合人气。借款人被分为若干信用等级,但是却不必公布自己的信用历史。在国内,2013年阿里

8、巴巴以5.86亿美元购入新浪微博18%的股份,其用意给人很多遐想空间,获得社交大数据,阿里完善了大数据类型。加上淘宝的水电煤缴费信息、信用卡还款信息、支付和交易信息,已然成为了数据全能选手。小贷类网站积累的信贷大数据包括信贷额度、违约记录等等。但单

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。