分析水质均化池容积计算

分析水质均化池容积计算

ID:22329725

大小:60.50 KB

页数:9页

时间:2018-10-28

分析水质均化池容积计算_第1页
分析水质均化池容积计算_第2页
分析水质均化池容积计算_第3页
分析水质均化池容积计算_第4页
分析水质均化池容积计算_第5页
资源描述:

《分析水质均化池容积计算》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、分析水质均化池容积计算:把水质均化过程分为两种类型:恒水位水质均化过程和变水位水质均化过程,分别建立了两种数学模型:节点模型和微分模型,求解模型得出了可用来模拟计算水质均化池最小有效容积迭代公式,说明了模拟算法的应用要点。:均化池水质均化调节池水质平衡Themathematicalmodelsofaybedividedintotypes:constantathematicalmodelcallednodalpointmodelanddifferentialcalculusmodelodelsobtainsomeiterativefor

2、mulaesaybeusedtocalculatetheminimumeffectivevolumeoftheequalizationbasin.Atlastshoulativecalculationmethod.Keywords:equalizationbasin;waterquality;equalization;waterregulatingtank;waterqualitybalance废水水量、水质的不均匀特性决定了废水处理工艺中均质池的重要性。均质池的作用在于以预定的均化方式利用适当的容积使不均匀水质得到预期程度的均化。由

3、于均质池池容受水质和水量两个方面的不均匀性共同影响,其复杂性超出了直观和经验方法所能确定的范围。对具体的废水其均质池池容只有通过模拟才确定。然而因人们对水质均化池的均化过程熟悉不充分、设计计算方法不正确,仍然见到设计容积过大或不够的均质池,致使水处理工程浪费或均化程度不够造成处理效果和系统的稳定性很差的。在当前水处理工艺向设备化和自动化方向发展的情况下,水质均化引起的设备有效性和稳定性题目更加突出,为此,本文在总结已有研究成果的基础上,进一步具体分析并求解了均化过程的微分模型,并回纳了水质均化池设计计算的要点,为模拟编程提供了算法和帮

4、助,意在改变水处理中应对不均匀现象的理论现状。1水质均化过程的理论与实践简述水质均化池可分为两种类型,其一为既可均化水质也可均化水量的均质池,水力特征为完全混合型,可再分为连续运行和间歇运行两种;另一类型是为只均化水质不均化水量的均质池,可再分为完全混合型的和异程式的两种均化池。异程式均质池的水力特征为推流型,有同心圆形均质池、矩形均质池、回流式均质池等。工程设计中还应考虑旁通贮留方式的优点及事故池的必要性[1[2。我国在均质池的设计方面,一直沿用着经验方法。该方法在选取设计容积时首先要判定废水的浓度和流量皆较大的时段区域,取这一时段

5、区域总水量的一半除以经验校正系数(考虑池内废水未能达到完全混合的放大系数,常取0.7),即为均质池有效容积。经验方法没有综合考虑水质水量的不均匀性,计算均质池有效容积的受主观因素影响较大。那种不首先获得水量水质不均匀数据,单凭估计确定均质池容积的做法是错误的。考虑现在计算手段大大增强,可用其它计算方法代替经验法。对其它方法先容较多的要数《三废处理工程技术手册》(废水卷),手册中先容了统计方法和Patterson与Menez提出的方法[3。这两种设计计算方法主要来自enez给出的方法外,还有Eckenfelder给出的有限差分法,Eck

6、enfelder有限差分法中还给出旁通贮留方式均质池设计的有限差分方法[2[4。然而在我国的设计手册和资料中对这两种可靠方法的先容都很简略。为弥补均质池设计理论上的不足,以混合过程为基础,针对均质池的类型对均化过程建立数学模型求解得出了与Patterson与Menez相同的迭代公式[5;还建立了均化过程的微分模型并给出模型的有限差分解,结果除包括Eckenfelder给出的有限差分公式外,还给出一种新的微分解。对于均化程度,Eckenfelder给出了一般原则。一般当废水峰值系数(Max/Mean值)PF≤1.2并且水质标准偏差与平衡

7、值之比(Sedev/Mean值)SDeff/X≤0.2就可满足水处理工艺的要求[2[4。一般当PF=1.2,另一约束条件可以保证。另外,考虑均质池计算中完全混合假设不能完全实现应赐与校正,通常取有效池容计算值除以0.7后作为均质池设计用有效池容。2恒水位水质均化池数学模型比较均化池容积恒为V;在废水不均匀变化周期内,水量和水质测定的时间间隔为Δt;第i个时间间隔内的均匀废水流量为Qi,均匀溶质浓度为ai,i=0,1,2…n-1;当进进均质池时池中的溶质浓度为ci;溶质在均质池中无相转移和化学变化,并且在瞬间均匀混合;混合后浓度为ci+

8、1,自池中流出流量为Qi、浓度为ci+1的废水;如此往复进行使废水浓度得以均化。恒水位均质池数学模型的解即为ci+1的迭代式。2.1恒水位水质均化池节点数学模型模型的特点是,把每一个时段看作一个节点,时间单位以Δt为最小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。